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1 Introduction 
1.1 Motivation 
 
With ever increasing software complexity, new engineering methods are needed to meet 
quality demands and a short time-to-market. Especially the customization of products for 
different market segments, different end users and different use-cases has been a reason for 
increasing complexity. To delay these design decisions as much as possible, variability is often 
shifted from hardware to software. Thus, a new set of engineering methods is needed to 
develop multiple software variants while at the same time meeting quality and time-to-
market goals. Software product line engineering has emerged as a vibrant research field to 
address these challenges. Software Product Lines are developed by systematically managing 
variability while taking advantage of commonality to achieve the necessary quality and time 
to market by strategic reuse.  
There are many successful cases in industry, where methods of software product line 
engineering have been successfully applied, most famously presented in the Product Line Hall 
of Fame1, often reporting spectacular results like a ROI of 10:1 or a productivity improvement 
of 360% (Cummins inc.). However, experience reports from industry are mostly at a very 
abstract level since they need to protect their business from the competition. Especially the 
source code of these product lines is not available to researchers.  
Therefore, researchers have turned to publicly available open source product lines. Most 
famously the Linux Kernel has been studied extensively by the product line community (e.g.  
[1][2][3]). However, when it comes to variability realization techniques, most studies focus 
only on the usage of conditional compilation in source code. The analysis of Preprocessor code 
can be easily automated, yields quantitative results and can be scaled to a large number of 
product lines [3]. There is little empirical work (quantitatively or qualitatively) on the usage of 
other known variability realization techniques like polymorphism or module replacement. 
Additionally, most studies focus on the source code and variability in build system or 
configuration is often neglected. We intent to address this gap with our research by 
investigating the variability realization in Android, a very well-known product line that has ς 
to the best of our knowledge ς not had any attention in product line research.    
 

1.2 Problem Statement 

1.2.1 Research Problems 
 
From these observations mentioned in the introduction we conclude the following research 
problems: 
 

P1: There is little knowledge (quantitatively or qualitatively) on the usage of variability 
realization techniques in large product lines besides the usage of conditional 
compilation in source code. 

 
P2: Existing analysis focus only on the source code and rarely investigate the usage of 

variability implementation mechanisms in configuration and build system. 
 

 

                                                      
1 http://splc.net/fame.html 
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1.3 Research Method 
 
To address these research problems, we will study the variability realization of large open 
source product lines. We will not only focus on the usage of conditional compilation in source 
code but also investigate the usage of other well-known implementation techniques in source 
code, build system and configuration files. Since the variability realization is also highly related 
to the configuration mechanisms, we also study the configurability of Android. 
We chose the Android operating system since it is a very popular software ecosystem that has 
not been studied by the product line community2. Moreover, it is a very heterogeneous 
software system incorporating many different open source projects and is characterized by its 
decentralized development. Therefore, we expect to find not a consistent use of a single 
variability realization technique but the usage of many different techniques that are used 
together. 
 

1.3.1 Research Questions 
 
We conclude the following research questions. While RQ2 addressed both P1 and P2, RQ1 can 
be considered a prerequisite. Since each variation point can be ultimately traced to some 
configuration option, is it necessary to understand how Android is being configured in order 
to understand how variability is realized. 
 
RQ1: How Is Android being configured for a specific device? 

RQ1.1: What configuration options exist? 
RQ1.2: What configuration mechanisms are used? 
RQ1.3: What is the impact of the configuration? 

 
RQ2: How is variability realized in Android?  

RQ2.1: What variability mechanisms are used on different layers? 
RQ2.2: Is the variability Implementation localized to individual layers or distributed 
among multiple layers (crosscutting)? 
RQ2.3: What is the quantitative usage of different variability realization techniques? 

 
These research questions are addressed in the following chapters: 
 

Table 1: Mapping of research questions to chapters 

Research Question Chapter 

RQ1.1 4.1.2.1 

RQ1.2 4.1.1.1 

RQ1.3 4.1.2.2 

RQ2.1 4.2.1 

RQ2.2 4.2.1 

RQ2.3 4.2.2 

 

                                                      
2 Android has been studied from an ecosystem perspective [24], but to the best of our 
knowledge there has been no analysis of the variability realization in the operating system 
itself. 
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1.3.2 Research Procedure 
 
Our research combines qualitative and quantitative data on the variability realization in 
Android.  
Qualitative data like the configuration mechanisms or examples for the usage of different 
variability realization techniques for different purposes are obtained by studying the official 
Android documentation, existing literature and manually searching through the Android OS 
source code. 
Based on these findings we developed tools to extract quantitative data on the impact of 
configuration mechanisms and the usage of different variability realization techniques. All 
tools have been developed in Python and are heavily based on Kati3, a tool developed by 
Google that can parse and partially evaluate Makefiles. Based on the Makefile abstract syntax 
tree created by Kati and specific variable names used in Androids Makefiles, we can then 
automatically detect different variability realization techniques. Additionally, the VITAL tool 
[4] is used for extracting the usage of preprocessor commands in C/C++ source code. 
 

1.4 Research Contribution 
 
Our main contribution in this project is the generation of empirical data (qualitative and 
quantitative) on the variability realization in Android, a large open source software ecosystem 
that is currently an open research topic. This includes qualitative data on the usage of different 
variability realization techniques and different configuration mechanisms in Android. We will 
also present quantitative data on the possible configuration options, configuration impact and 
the usage of variability realization techniques. To generate this data, we present a new 
analysis method for extracting variability data from Make-based open source systems and 
implemented the necessary tool support to automate this analysis. 
 

1.5 Research Scope 
 
There are different flavors of Android for smart watches, smartphones, televisions, cars, which 
can altogether be viewed as a product line. But in this report, we will look at Android OS for 
smartphones/tablets and treat this version of Android alone as a product line. Therefore, we 
will only focus on variability mechanisms bound at construction time since this is one of the 
main variability drivers for smartphones, although Android also includes mechanisms for 
runtime variability (e.g. through property files, apps, etc.). Similarly, in our quantitative 
analysis we will focus on variability mechanisms related to hardware variability (i.e. defined in 
Android board configuration). 
 

1.6 Summary 
 
Chapter two introduces the terminology and foundational knowledge about product lines, 
variability and binding times. Additionally, the variability realization techniques commonly 
found in literature are presented. In chapter three the target system Android, its architecture 
in terms of configuration, build system and source code is explained. Based upon this, chapter 
four contains the analysis results concerning AndroidΩs configurability and variability 
implementation. We present the most important configuration mechanisms and analyze their 

                                                      
3 https://github.com/google/kati 
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impact on the rest of the system. Additionally, variability realization techniques in Android are 
presented, both, in terms of typical examples and quantitative results on the usage of 
different techniques.  
 

2 Foundations 
2.1 State of the Art 

2.1.1 Terminology 
 

2.1.1.1 Software Product Line 
 
α! ǎƻŦǘǿŀǊŜ ǇǊƻŘǳŎǘ ƭƛƴŜ ƛǎ ŀ ǎŜǘ ƻŦ software-intensive systems sharing a common, managed 
set of features that satisfy the specific needs of a particular market segment or mission and 
that are developed from a common set of core assets in a prescribed wayά [5]. Instead of 
developing each product from scratch, product line engineering is about taking advantage of 
commonality and carefully managing variability. New products can be assembled from already 
existing parts (core assets) tailored to individual costumers. Despite tailor-made products, the 
expected benefits from adopting a product line over single system development include 
reduced costs, improved quality and fast time to market [6].  
It is clear that these advantages do not come for free. A product line requires a serious upfront 
investment for domain engineering processes like scoping or development of core assets. 
Figure 1 shows the expected costs for developing several systems from scratch compared to 
a product line approach. A small number of systems can still be developed with less effort 
using a single-system development approach since there is no investment into strategic reuse 
required. Only if many different (but similar) systems are developed such an upfront 
investment pays off in the long term. 
 

 
Figure 1: Comparison of costs for single system development and product-line development [7] 

 
 

2.1.1.2 Variability 
 
Variability is a very general concept within product line engineering and can refer to the 
variability within a software development process as well as its resulting artefacts like 
requirements specifications, architecture documents, source code or test cases [8]. For our 

10 1.  Introduction to Software Product Line Engineering 

for software, the break-even point is already reached around three systems.4

A similar figure is shown in [Weiss and Lai 1999], where the break-even 

point is located between three and four systems. The precise location of the 

break-even point depends on various characteristics of the organisation and 

the market it has envisaged, such as the customer base, the expertise, and the 

range and kinds of products. The strategy that is used to initiate a product 

line also influences the break-even point significantly [McGregor et al. 

2002]. Chapter 20 elaborates on the initiation of product lines. 

1.3.2 Enhancement of Quality 

The artefacts in the platform are reviewed and tested in many products. They 

have to prove their proper functioning in more than one kind of product. The 

extensive quality assurance implies a significantly higher chance of detecting 

faults and correcting them, thereby increasing the quality of all products. 

1.3.3 Reduction of Time to Market 

Often, a very critical success factor for a product is the time to market. For 

single-product development, we assume it is roughly constant,5 mostly com-

prising the time to develop the product. For product line engineering, the 

time to market indeed is initially higher, as the common artefacts have to be 

built first. Yet, after having passed this hurdle, the time to market is consid-

                                                     
4 [Clements and Northrop 2001]: The sidebar on p. 226, ñIt Takes Twoò, provides a closer examination 

of the break-even point for software product lines. 
5 In practice, this number varies, but for showing the effect of single-system vs. product line engineering 

this assumption is sufficiently accurate. 
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purpose, we want to use a definition of variability that is more targeted towards variability 
implementation. ±ŀǊƛŀōƛƭƛǘȅ Ŏŀƴ ōŜ ŘŜŦƛƴŜŘ ŀǎ άǘƘŜ ŀōƛƭƛǘȅ ǘƻ ŘŜǊƛǾŜ ŘƛŦŦŜǊŜƴǘ ǇǊƻŘǳŎǘǎ ŦǊƻƳ ŀ 
ŎƻƳƳƻƴ ǎŜǘ ƻŦ ŀǊǘŜŦŀŎǘǎέ [6]. 
Anastasopoulos and Gacek [9] differentiate between multiple types variability which are 
shown in Table 2. In general, one can differentiate between positive and negative variability, 
where positive variability adds functionality and negative variability removes functionality. 
Other categories denote the optional inclusion of code/requirements/components, their 
replacement (alternative) or change in their functionality. Another variability type is 
concerned with a change in the platform or environment of a system. An example for such 
variability is the migration of a system from a Unix-based environment to a Windows-based 
environment. 

Table 2: Variability Types [9] 

Variability Type Meaning 

Positive Functionality is added 

Negative Functionality is removed 

Optional Code is included 

Alternative Code is replaced 

Function Functionality changes 

Platform / Environment Platform or environment changes 

 
To describe variability even further Pohl introduced the notion of variability subject and object 
[7]. A variability subject ƛǎ άŀ ǾŀǊƛŀōƭŜ ƛǘŜƳ ƻŦ ǘƘŜ ǊŜŀƭ ǿƻǊƭŘ ƻǊ ŀ ǾŀǊƛŀōƭŜ ǇǊƻǇŜǊǘȅ ƻŦ ǎǳŎƘ ŀƴ 
ƛǘŜƳέ ŀƴŘ ŘŜǎŎǊƛōŜǎ what Ŏŀƴ ǾŀǊȅΦ ! ǾŀǊƛŀōƛƭƛǘȅ ƻōƧŜŎǘ ƛǎ άŀ ǇŀǊǘƛŎǳƭŀǊ ƛƴǎǘŀƴŎŜ ƻŦ ŀ ǾŀǊƛŀōƛƭƛǘȅ 
ǎǳōƧŜŎǘέ ŀƴŘ ŘŜǎŎǊƛōŜǎ how an item varies. An example for a variability subject is the cooking 
time of a steak where possible instances (variability objects) are rare, medium rare or well 
done. The manifestation of variability subjects in artefacts such as requirements, architecture 
or code is referred to as a variation point. Jacobson et ŀƭΦ ŦƛǊǎǘ ƛƴǘǊƻŘǳŎŜŘ ǘƘƛǎ ǘŜǊƳ ŀǎ άƻƴŜ ƻǊ 
ƳƻǊŜ ƭƻŎŀǘƛƻƴǎ ŀǘ ǿƘƛŎƘ ǘƘŜ ǾŀǊƛŀǘƛƻƴ ǿƛƭƭ ƻŎŎǳǊέ [10]Φ !ƴŀƭƻƎƻǳǎƭȅΣ ǘƘŜ άǊŜǇǊŜǎŜntation of a 
ǾŀǊƛŀōƛƭƛǘȅ ƻōƧŜŎǘ ǿƛǘƘƛƴ ŘƻƳŀƛƴ ŀǊǘŜŦŀŎǘǎέ [7] is called a variant. /ƻƴǎƛŘŜǊ ǘƘŜ ŎƻƭƻǊ ƻŦ !ǇǇƭŜΩǎ 
iPhone. Possible variability objects include green, blue, black, yellow, etc. However, Apple only 
offers silver, gold, rose gold and black as possible variants for this variability object. Therefore, 
variants might only be a subset of possible variability objects. 
 

2.1.1.3 Feature 
 
The term feature ŘŜǎŎǊƛōŜǎ άŀ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎ ƻǊ ŜƴŘ-user-visible behavior of a software 
ǎȅǎǘŜƳέ [6] and is typically used in the context of a product line to distinguish multiple 
products.  
A product can be thought of as a set of features, a so-called feature selection. This concept 
allows to easily communicate product characteristics to all stakeholders while also enabling 
to manage variability and commonality in all software lifecycles. 
Anastasopoulos and Gacek [9] define multiple feature types (cf. Table 3) that constrain feature 
selection. A mandatory feature must be present in all products, while an optional feature may 
only exist in a subset of products. Constraints between features include alternative features 
(i.e. only one of several features can be selected) and mutually inclusive and exclusive 
features.  
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Table 3: Feature Types [9] 

Feature Type Meaning 

Mandatory The feature must be always included. 

Optional The feature is an independent complement that 
may be included or not. 

Alternative The feature replaces another feature when 
included. 

Mutually Inclusive In order for the feature to be included, specific 
other feature(s) must be included as well and 

vice versa. 

Mutually Exclusive In order for the feature to be included specific 
other feature(s) must be left out and vice versa. 

 
Features and their relations are typically specified in a feature model whose graphical 
representation is called a feature diagram. An example for a feature diagram of a graph library 
is depicted in Figure 2. The diagram is a tree whose nodes denote features and different 
notations for parent-child connections encode different feature types. Additionally, 
constraints for feature selection may be added as propositional logic.  
In Figure 2, an empty circle on top of a feature denotes on optional feature, while a filled circle 
denotes a mandatory feature. An empty circle at the bottom of a node defines a one-out-of-
many relationship, so that only one of the child nodes may be selected for any product. A filled 
circle defines a some-out-of-many relationship and any number of children may be selected 
for a product. Mutually inclusive and exclusive feature types are defined via constraints. For 
example, the MSG algorithm can only be selected if the graph is undirected and weighted 

(MSGĄUndirected Ø Weighted). 

 
Figure 2: A feature diagram for a graph library [6] 

2.1.2 Binding Time 
 
When deriving a product from a common set of assets, at one point the decision needs to be 
made how to resolve variability added through variation points (i.e. which features to include 
or exclude in a product). The time at which this decision is made is called the binding time. 
Depending on the domain and on the business objective for a product line, it can make sense 
to make this decision sooner or later.  
For example, in embedded systems where resources are often scarce variability is bound 
rather sooner than later so that the code for a single product can be optimized and needs as 
little memory as possible. In other domains like the smartphone industry where additional 
functionality can be added by users by installing additional apps, such variability needs to be 
present at runtime. 
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Svahnberg et al. [8] ŘŜŦƛƴŜ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ǇƘŀǎŜǎ ƻŦ ŀ ǎȅǎǘŜƳΩǎ ƭƛŦŜŎȅŎƭŜ ǿƘŜǊŜ ǾŀǊƛŀōƛƭƛǘȅ Ƴŀȅ 
be bound: Product architecture derivation, compilation, linking and runtime.  During product 
architecture derivation, variation points in the product line architecture need to be set to a 
particular variant to derive the architecture for a particular product. Examples for variation 
points may be optional components that correspond to an optional feature or selecting a 
particular specialization of a general component (e.g. depending on the target hardware 
platform). The most common technique for bounding variability at compile time is the C/C++ 
preprocessor which scans the source code and adds or removes certain parts. During linking, 
the object files created by the compiler are built into an executable. This step depends on the 
chosen programming language and technologies that are used. During runtime, it may be 
possible to extend the system by adding new variants (e.g. downloading apps on the 
smartphone) or to choose among a set of predefined variants (e.g. by changing the settings in 
an application). 
 

2.1.3 Overview of Variability Realization Techniques 
 
In this section, we will give a brief overview of variability realization techniques commonly 
found in literature. We will only consider mechanisms that bind variability as early as compile-
time. In particular we will not cover product architecture derivation as an earlier binding time 
[8]. We will look specifically at variability mechanisms in source code, although some 
mechanisms can also be used on other artefacts like requirements specification or 
architecture documentation. 
 

Variability Mechanism Binding Time Implementation Granularity 

Conditional Compilation Compilation  Preprocessor Any 

Conditional Execution Runtime Conditional 
Statements 

Limited, mostly 
Statements 

Inheritance/Polymorphism Compilation/Runtime Language 
Constructs 

Any 

Module Replacement Compilation/Linking Build System Any 

Aspect Orientation Compilation Specific tools for 
code weaving 

Limited, mostly 
statements 

Frame Technology Compilation Specific tools Any 

Cloning Compilation Copy&Paste, 
Branches 

Any 

Figure 3: Overview of variability mechanisms commonly found in literature. Data adapted from [11]. 

2.1.3.1 Conditional Compilation  
 

Description  
Conditional compilation is a widely used variability mechanism in open source software as 
well as in industrial software [12]. It allows programmers to conditionally add or remove code 
before compilation based on a configuration. This variability is bound at construction time 
which allows for highly optimized and memory efficient code. This mechanism can be used to 
conditionally compile single statements, classes, modules ς there is no limit for application in 
terms of granularity.  
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Implementation 
Conditional compilation is typically implemented using a preprocessor, most famously the 
C/C++ preprocessor. Using #ifdef directives, any part of the code can be conditionally 
compiled based on some #define definitions.  
 
 

 
 
 
 
 
 

 
 
 
Figure 4 shows two examples for the usage of the C/C++ preprocessor. The left example 
demonstrates the conditional inclusion of files based on the target operating system (OS is 
Windows if __WINDOWS__ is defined through #define __WINDOWS__) and the right example 
shows the addition of a heat sensor based on if the target product supports such a sensor (if 
HAS_HEAT_SENSOR is defined through #define HAS_HEAT_SENSOR). 
Although preprocessors are mostly used for code, they work on any text-based artefact and 
can also be used for requirements documents, architecture documentation, etc.  
 

Advantages & Disadvantages 
Conditional compilation is very easy to apply using available preprocessors. These are not 
limited to code but can be applied to any text-based document since they are oblivious to the 
syntax.  
However, for a long term benefit their usage requires some discipline. Since the preprocessor 
is also used for other things beside variability implementation (e.g. constant definitions), its 
usage as a variability mechanism should be clearly separable by employing a prefix like 
HAS_PREFIX. This also allows further automated analysis regarding code erosion and dead 
code detection [13]. The developer should also care for simple logical expressions inside #ifdef 
statements and avoid highly nested #ifdef code to keep the code maintainable [14]. 
  

2.1.3.2 Conditional Execution 
 

Description  
Conditional execution uses standard conditional statements to implement variability. In 
contrast to conditional compilation these statements are executed at runtime and can thus 
be used to implement runtime variability. Since these statements are part of the programming 
language, they need to obey its syntax rules and can only be used to implement variable blocks 
of statements. 
 

Implementation 
The build-in if-else or switch constructs of programming languages are used to implement 
conditional execution. In order to differentiate variability implementation from regular usage 

1. #ifdef __WINDOWS__ 
2.        #include <winsock2.h> 
3. #else 
4.        #include <sys/socket.h> 
5. #endif 

Figure 4: Example for conditional compilation using the C/C++ preprocessor. (Left)  To include a file 
based on the operating system. (Right) To add functionality for a heat sensor. 

1. #ifdef HAS_HEAT_SENSOR 
2. Sensor sensor = new HeatSensor(); 
3. Observer.register(sensor);  
4. #endif 
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of conditional statements, it is recommended that a specific variable naming pattern (e.g. a 
common prefix) is chosen.  

 

Advantages & Disadvantages 
Conditional execution is very easy to use and required no further tools since conditional 
statements are part of every higher programming language. Since conditional statements are 
also used for other things, there is risk of mixing the implementation of variability with the 
rest of the code. A naming pattern of variables can solve this issue. 
A disadvantage of this approach is the mixing of commonality and variability inside a single 
file. For example, a new variant cannot be added without first understanding and then altering 
the existing code. Like with conditional compilation there is also the risk of creating highly 
nested or complex conditional expressions that increase maintainability over time. 
 

2.1.3.3 Inheritance/Polymorphism 

 

Description 
There are multiple different variability mechanisms related to inheritance or polymorphism 
ranging from binding at compile time to binding at runtime.  
Mechanisms commonly found in literature include subtype polymorphism, parametric 
polymorphism (often called static polymorphism) and overloading [11][15] as well as multiple 
inheritance, mixin-based inheritance, object-based inheritance [9] and ad-hoc polymorphism 
and casting [15]. 
 

Implementation 
The implementation of inheritance-based variability mechanisms typically depends on the 
specific type of mechanisms and the programming language. Not all mechanisms can be 
implemented in all object-oriented languages. For example, Java does not support multiple 
inheritance (in contrast to C++).  
More information on how to implement subtype polymorphism and parametric 
polymorphism in C++ can be found in [16] and [17]. 
 

Advantages & Disadvantages 
A common advantage of inheritance-based mechanisms is the separation of commonality and 
variability. For example, an abstract class called Sensor implements the common behavior 
across all sensors, while each specific sensor is implemented in a subclass. This technique is 
often used in frameworks to allow developers to define extensions to the existing functionality 
[11].  
On the other hand, this approach of implementing variability and commonality in different 
files does not scale well. With increasing variability, the amount of subclasses increases as 
well, creating a complex inheritance tree. Runtime binding always adds a performance 
penalty, and may also result in runtime errors (null pointers) [11].  
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2.1.3.4 Module Replacement 
 

Description  
Module replacement is used for selecting between files or subsystem often stored in sibling 
directories. Depending on the implementation technique this selection can take place during 
compilation or linking. 
 

Implementation 
Module replacement is commonly implemented in C++, where an (possibly conditionally) 
included header file selects the right file to include or the header files have identical names 
among sibling directories, in which case the selection can be done using the ςI flag to select 
an include directory (compile time) or ςL flag to select a path to a linked library. 
 

Advantages & Disadvantages 
Like inheritance-based mechanisms, module replacement allows the separation of variants 
but has no runtime overhead since variability is bound during compilation or linking.  
However, variation points are not easily visible in code (in case the headers have identical 
names) and may also involve the build system (e.g. to specify ςI or ςL flags). This problem can 
be addressed by tool support. Another problem is the handling of defaults (e.g. in case of 
optional variability) since a module needs to be selected at all time. A dummy module may 
solve this problem [11]. 
 

2.1.3.5 Aspect Orientation 
 

Description  
Aspect orientation is a technique to address the problem of crosscutting concerns that result 
in code duplication, scattering or tangling. It uses so-called aspects to localize the code related 
to these concerns into one code unit. ά!ƴ ŀǎǇŜŎǘ ƛǎ ŀ ǇǊƻƎǊŀƳƳing construct that encapsulates 
the implemenǘŀǘƛƻƴ ƻŦ ŀ ŎǊƻǎǎŎǳǘǘƛƴƎ ŎƻƴŎŜǊƴά [6]. An aspect is then weaved into the rest of 
the program at specific locations (called joint points) using a process called aspect weaving.  
 

Implementation 
The implementation typically requires special tool support (e.g. AspectJ) since code weaving 
is not supported in most programming languages. 
 

Advantages & Disadvantages 
Similar to module replacement, this technique allows the separation of commonality and 
variability. Additionally, it provides the means to localize implementation of features which 
would otherwise be scattered across the code and result in duplicated code. 
However, this technique can only be used with additional tool support since code weaving is 
not supported in most programming languages. In contrast to techniques like inheritance or 
conditional execution which use constructs that every programmer is familiar with, this 
technique will most likely require a learning phase before it can be applied. 
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2.1.3.6 Frame Technology 
 

Description  
Frame Technology is a variability mechanism developed by Paul G. Basset [18] that allows to 
separate those modules that change frequently from those that change less frequently. For 
example, the implementation of common functionality across all products may not change 
very often, whereas new features or changes to existing features may be more frequent. If 
commonality and variability reside in the same file, each change has the potential to break the 
common code although only the variable code needs to be changed. Using Frame Technology 
άŀǊōƛǘǊŀǊȅ ǘŜȄǘ ǇŀǊǘǎ Ŏŀƴ ōŜ ƳŀƴŀƎŜŘ ŀǎ ǾŀǊƛŀōƛƭƛǘƛŜǎΣ ŜǾŜƴ ǎȅƴǘŀŎǘƛŎŀƭƭȅ ƛƴŎƻƳǇƭŜǘŜ ŎƻŘŜ ǎǳŎƘ 
ŀǎ ǇŀǊǘƛŀƭ ƭƻƻǇǎ ƻǊ ƛǎƻƭŀǘŜŘ ǊŜǘǳǊƴ ǎǘŀǘŜƳŜƴǘǎέ [19]. 
 

Implementation 
Similar to aspect orientation, the implementation of Frame Technology requires special tool 
support. A detailed example can be found in [19]. 
 

Advantages & Disadvantages 
Like module replacement or inheritance, this technique allows the separation of common and 
variable code but unlike other mechanisms, it does not need to respect the programming 
language syntax when doing so. 
This technique is not well known and not widely used [11]. It requires special tool support and 
additional training. 
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3 Android 
 
Android is the most successful mobile operating system of all time, currently owning a market 
share of 84.1% (according to Gartner, May 2016).  It is not only the major operating system 
for smartphones, but also runs on tablets, wearables like smartwatches, televisions and 
automotive multimedia systems. Clearly, such a platform needs to carefully manage 
variability. After all, these different kinds of devices greatly differ in terms of their provided 
functionality, user interface, hardware, etc.  
In this report, we will focus solely on Android (version 6) for smartphones and tablets, since 
this is the primary usage of Android.  
 
 

 
Figure 5: Android 6 devices and their HW/SW characteristics 

Figure 5 depicts the specification for different smartphones and tablets, all running the current 
Android operating system version six. The obvious variability among these devices is their 
underlying hardware. They use different CPUs, GPUs, different display technologies with 
different dimensions, different sensors and cameras. This includes optional variability (like 
different sensors) and alternative variability (like CPU or GPU). In fact, the underlying 
hardware is the only way, that a regular smartphone can stand out from the competition. 
Since the Android app store is open to all Android smartphones, they can all download the 
same applications. Therefore, any pure software variability can be easily replicated by third 
party apps. For example, the LG Nexus 5 is the only device whose camera has built-in smile 
detection. However, a quick search in the Google play store instantly reveals third party apps 
that enable all other devices to achieve the same functionality. 
  

Asus Nexus 7 cellular (2013)
(ñasus debò)

Asus Nexus 7 wiý (2013)
(ñasus þoò)

HTC Nexus 9
(ñhtc þounderò)

Motorola Nexus 6
(ñmoto shamuò)

Network 
Technology

GSM / HSPA / LTE No cellular GSM / CDMA / HSPA / LTE

Display
LED-backlit
7.0 inches
1200 x 1920 pixels

LED-backlit
7.0 inches
1200 x 1920 pixels

IPS LCD 
8.9 inches
1536 x 2048 pixels

AMOLED 
5.96 inches
1440 x 2560 pixels

No cellular

Chipset
Qualcomm Snapdragon 
S4Pro

Nvidia Tegra K1 Qualcomm Snapdragon 805Qualcomm Snapdragon 
S4Pro

CPU Quad-core 1.5 Ghz Krait Dual-core 2.3 Ghz Denver Quad-core 2.7 Ghz Krait 450Quad-core 1.5 Ghz Krait

GPU Adreno 320 Adreno 320 Kepler DX1 Adreno 420

Primary camera
5 MP
Geo-tagging, touch focus, 
face detection

5 MP
Geo-tagging, touch focus, 
face detection

8 MP
Geo-tagging, touch focus, 
face detection

13 MP
Geo-tagging, touch focus, 
face detection, panorama, 
HDR

Sensors
Accelerometer, gyro, 
proximity, compass

Accelerometer, gyro, 
proximity, compass

Accelerometer, gyro, 
compass

Accelerometer, gyro, 
proximity, compass, 
barometer

LG Nexus 5
(ñlge hammerheadò)

GSM / CDMA / HSPA / LTE

True HD IPS+
4.95 inches
1080 x 1920 pixels

Qualcomm MSM8974
Snapdragon 805

Quad-core 2.3 Ghz Krait 400

Adreno 330

8 MP
Geo-tagging, touch focus, 
face/smile detection, 
panorama, HDR

Accelerometer, gyro, 
proximity, compass, 
barometer
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3.1 Android Architecture 
 
A look at the Android architecture gives a first clue on how hardware variability is being 
supported within Android.  
 
The topmost layer consists of the 
application framework containing the 
standard Android APIs used by app 
developers to access basic 
functionality. The Binder IPC proxies 
enable the inter-process 
communication between the 
application framework and the system 
services which are used by the 
application framework to access the 
underlying hardware.  
The hardware abstraction layer 
exposes a consistent interface to 
higher layers while allowing the 
underlying hardware implementation 
to change. This is a common variability 
mechanism at the architectural level 
that enables the support for cameras, 
sensors, etc. without having to change 
any of the upper layers.  
Android is built on top of the Linux 
kernel whose device drivers control the 
hardware. 
 
The Android architecture already gives 
some insight into how this operating 
system supports hardware variability: 
 

1. Android makes use of HALs that hide all hardware related variability from upper layers 
by providing a consistent interface. This is the location were hardware vendors can add 
their custom implementations. 

2. Android is built on top of the Linux kernel, which provides its own sophisticated 
mechanisms for handling variability that have been studied in detail by the product 
line community. For example, the Linux kernel can be compiled for many different 
hardware architectures (like x86 or ARM) which allows it to run on tablets, 
smartphones, TVs, desktop pcs, etc.  As we will later see, the Linux kernel is actually 
not part of the Android source code, but is included as a precompiled binary. 
Therefore, a lot of the variability is already bound and does not need to be considered 
by Android. 

 
 
 

Figure 6: Overview of the Android architecture [21] 
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3.2 Android from a Product Line Perspective 
 

Table 4: Android source code structure [20]  

Directory  Content 

Abi Minimal C++ Run-Time Type information 
support 

Bionic !ƴŘǊƻƛŘΩǎ ŎǳǎǘƻƳ / ƭƛōǊŀǊȅ 

Bootable OTA, recovery mechanism and reference 
bootloader 

Build Build System 

Cts Compatibility Test Suits 

Dalvik Dalvik VM 

Development Development tools 

Device Device-specific files and components 

Docs Content of http://source.android.com 

External External projects imported into the AOSP 

Frameworks Core components such as system services 

Hardware HAL and hardware support libraries 

Libcore Apache harmony 

Libnativehelper Helper functions for use with JNI 

Ndk  Native development Kit 

Out Build output will be placed here 

Packages Stock Android apps, providers and IMEs 

Pdk Platform Development Kit 

Prebuilt Prebuilt binaries, including toolchains 

Sdk Software Development Kit 

System Embedded Linux platform that houses 
Android 

Tools Various IDE tools 

From an external perspective Android can clearly be seen as a Software Product Line. Figure 
5 showed some sample products containing commonality and variability that are all running 
the same Android version.  
As it turns out, Android also conforms to the model of a Product Line from an internal 
perspective.  Table 4 shows the folder structure of the Android source code, where core assets 
ŀƴŘ ŀǇǇƭƛŎŀǘƛƻƴ ǎǇŜŎƛŦƛŎ ŀǎǎŜǘǎ ŀǊŜ ŎƭŜŀǊƭȅ ǎŜǇŀǊŀǘŜŘΦ ¢ƘŜ ά5ŜǾƛŎŜέ ŦƻƭŘŜǊ Ŏƻƴǘŀƛƴǎ ǇǊƻŘǳŎǘ 
specific assets like custom apps, layout files and other configuration files. The folders 
highlighted in blue can be considered as core assets. These are Android specific modules, but 
also other open-source projects that have been integrated into the Android platform. They 
may contain variability that is resolved during the build process based on the selected 
configuration. A specific product is derived by building Android with a selected product 
ŎƻƴŦƛƎǳǊŀǘƛƻƴΦ ¢ƘŜ ǊŜǎǳƭǘƛƴƎ ŦƛƭŜǎ ŀǊŜ ǇƭŀŎŜŘ ƛƴ ǘƘŜ άhǳǘέ ŦƻƭŘŜǊ ǿƘƛŎƘ ŘƻŜǎ ƴƻǘ Ŏƻƴǘŀƛƴ ŀƴȅ 
build-time variability any more.  
 
 

Core Assets    Application specific code 

http://source.android.com/
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3.3 Conceptual Architecture of Android 

3.3.1 Overview 
 

 
 
 
Conceptually, we decompose Android into three layers (cf. Figure 7). The configuration layer 
comprises AndroidΩs configuration files that define its configuration space and act as input for 
product derivation. Android defines different kinds of configurations at different layers of 
abstraction, namely the product and board configuration. The product derivation process is 
implemented by Androids build system that resolves variability based on the selected 
configuration. This can have an effect on the overall build process (global Makefiles) or on 
individual modules (module Makefiles). The source code is organized in modules that can be 
hierarchically grouped. Each module contains an Android.mk file that defines its compilation 
process.  

 

3.3.2 Android Configuration 
 

Table 5: Android Configuration Layers [21] 

Layer Example Description 

Product myProduct, 
myProduct_eu 

The product layer defines the feature specification 
of a shipping product such as the modules to 
build, locales supported, and the configuration for 
various locales. In other words, this is the name of 
the overall product. [é] 

 

Board/Device Trout, goldfish The device/board layer represents the physical 

layer of plastic on the device (i.e. the industrial 
design of the device). For example, North 
American devices probably include QWERTY 
keyboards whereas devices sold in France 
probably include AZERTY keyboards. [é] 

Arch Arm, x86, mips, arm64 The architecture layer describes the processor 
configuration and ABI (Application Binary 
Interface) running on the board. 

 

 
Android specifies three different layers of configuration with decreasing abstraction level. We 
will focus on the first two, the product and board configuration since the architecture 
configuration is part of the Linux kernel. 

Figure 7: Conceptual Architecture of Android. Refinement level 1 (left) and 2 (right) 
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Configuration files in Android are regular Makefiles, although they only make use of a subset 
of the Make language. They assign values to a set of predefined constants that will be used 
during the build process to decide which modules to build, how to resolve their variability, 
etc. Note that there is no tool support for creating a configuration. The recommended 
approach is to copy an existing configuration and adjust it as necessary. 
 

3.3.2.1 Product Configuration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The product configuration is the configuration on the highest level of abstraction. Although it 
ƛǎ ŘƻŎǳƳŜƴǘŜŘ ŀǎ ŀ άŦŜŀǘǳǊŜ ǎǇŜŎƛŦƛŎŀǘƛƻƴέΣ ǿŜ ǿƛƭƭ ǎŜŜ ǘƘŀǘ ǘƘŜ ŀōǎǘǊŀŎǘƛƻƴ ǘƻ ǘƘŜ ƭŜǾŜƭ ƻŦ 
features is inherently missing. Other product lines like the Linux kernel allow the user to select 
which features should be included in the current build and then maps this information to a 
lower level configuration containing which modules to compile, which dependencies to 
resolve and which parameters to choose. Android on the other hand does not provide any 
such mapping and puts the burden on the configurator to select modules and to set 
parameters in such a way that the desired features are included in the current build. Figure 9 
shows an example product configuration from a Nexus phone. The configuration mechanisms 
in the product configuration will be explained in detail in section Product Configuration on 
page 22. 
 
 
 

  # Inherit from the common Open Source product configuration 
$(call inherit-product, $(SRC_TARGET_DIR)/product/aosp_base_telephony.mk) 
 
PRODUCT_NAME := aosp_shamu 
PRODUCT_DEVICE := shamu 
PRODUCT_MODEL := AOSP on Shamu 
PRODUCT_MANUFACTURER := motorola 
 
 
PRODUCT_PACKAGES += \  
    Launcher3 

  PRODUCT_COPY_FILES += \     device/moto/shamu/init.shamu.rc:root/init.shamu.rc 
  PRODUCT_PROPERTY_OVERRIDES +=  persist.ims.disableDebugLogs=1 
  PRODUCT_LOCALES += en_GB de_DE es_ES fr_CA 

Figure 8: Product configuration excerpt from device/moto/shamu (device.mk) 
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3.3.2.2 Board Configuration 
 
According to the Android specification, the 
board configuration represents the 
άǇƘȅǎƛŎŀƭ ƭŀȅŜǊ ƻŦ ǇƭŀǎǘƛŎ ƻƴ ǘƘŜ ŘŜǾƛŎŜέΦ ¢Ƙƛǎ 
configuration certainly defines more 
technical characteristics of the device on a 
lower level of abstraction than the product 
configuration. Examples are the processor 
architecture, cpu or wlan device. However, 
in contrast to the product configuration, the 
variable names of the board configuration 
and also their possible values are not 
defined by the Android specification which 
makes the configuration a tedious and error 
prone task. The constants defined in this 
configuration are referenced by global 
Makefiles as well as local Makefiles of 
individual modules and often appear in conditional statements. Therefore, there exists an 
implicit set of possible values for each constant. Since there is also no tool support, the only 
option is to manually trace a constant through the build files in order to know their possible 
values and impact.  
 

3.3.3 Android Build System 
 

 
Figure 10: Schematic overview of the Android build system 

 
Androids build system is based on GNU Make. But unlike most Make-based build systems, it 
does not use it recursively (i.e. build each subsystem independently by a recursive Make call). 
Instead, it relies on file naming conventions and includes all files with a certain name 
throughout the source code to build a gigantic Makefile during built time.  
A schematic overview of the build system is depicted in Figure 10. The build system is 
decomposed in ǘƘŜ ōǳƛƭŘ ŎƻƴŦƛƎǳǊŀǘƛƻƴ όǳǎƛƴƎ ǘƘŜ άƭǳƴŎƘέ ǘƻƻƭύΣ Ǝƭƻōŀƭƭȅ ŘŜŦƛƴŜŘ aŀƪŜŦƛƭŜǎ Ŏŀƴ 
control the overall build process (residing in build/core/) and module Makefiles (named 
ά!ƴŘǊƻƛŘΦƳƪέύ ǘƘŀǘ ŘŜŦƛƴŜ Ƙƻǿ ŀƴ ƛƴŘƛǾƛŘǳŀƭ ƳƻŘǳƭŜ ƛǎ ōŜƛƴƎ ŎƻƳǇƛƭŜŘΦ 

Figure 9: Board configuration excerpt from device/moto/shamu 
(BoardConfig.mk) 

  TARGET_CPU_ABI := armeabi-v7a 
  TARGET_CPU_ABI2 := armeabi 
  TARGET_ARCH := arm 
  TARGET_ARCH_VARIANT := armv7-a-neon 
  TARGET_CPU_VARIANT := krait 
  ENABLE_CPUSETS := true 
  TARGET_NO_BOOTLOADER := true 
  BOARD_KERNEL_BASE := 0x00000000 
  BOARD_KERNEL_PAGESIZE :=  2048 
  BOARD_KERNEL_TAGS_OFFSET := 0x01E00000 
  BOARD_RAMDISK_OFFSET     := 0x02000000 
  MAX_VIRTUAL_DISPLAY_DIMENSION := 2048 
  BOARD_EGL_CFG := device/moto/shamu/egl.cfg 
  BOARD_USES_ALSA_AUDIO := true 
  WPA_SUPPLICANT_VERSION      := VER_0_8_X 
  BOARD_WLAN_DEVICE           := bcmdhd 
  BOARD_WPA_SUPPLICANT_DRIVER := NL80211 
  BOARD_WPA_SUPPLICANT_PRIVATE_LIB :=   

lib_driver_cmd_$(BOARD_WLAN_DEVICE) 
  BOARD_HOSTAPD_DRIVER        := NL80211 
  [ΧΦΦ] 
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The Android build process starts by selecting a product configuration to be built using the 
άƭǳƴŎƘέ ǘƻƻƭΦ ¢ƘŜ ōǳƛƭŘ ǇǊƻŎŜǎǎ ƛǎ ǘƘŜƴ ƛƴƛǘƛŀǘŜŘ ōȅ ǊǳƴƴƛƴƎ aŀƪŜΣ ǿƘƛŎƘ ŜȄŜŎǳǘŜǎ ǘƘŜ Ǝƭƻōŀƭƭȅ 
defined Makefiles in the build/core directory. These Makefiles include (the Make άƛƴŎƭǳŘŜέ 
operation is similar to a preprocessor #include) the configuration files of the previously 
selected configuration and make use of their definitions to resolve variability and adjust the 
build process accordingly.  
The Android source code is decomposed into modules. Each module has a file called 
ά!ƴŘǊƻƛŘΦƳƪέ ǘƘŀǘ ŘŜŦƛƴŜǎ Ƙƻǿ ŜŀŎƘ ƳƻŘǳƭŜ ǎƘƻǳƭŘ ōŜ ŎƻƳǇƛƭŜŘΦ ¢ƘŜǎŜ ŦƛƭŜǎ ƳƛƎƘǘ ŀƭǎƻ 
include conditional statements referencing the variables from the product and/or board 
coƴŦƛƎǳǊŀǘƛƻƴΦ ¢ƘŜ Ǝƭƻōŀƭ aŀƪŜŦƛƭŜǎ ǿƛƭƭ ƛƴŎƭǳŘŜ ŀƭƭ ŦƛƭŜǎ ƴŀƳŜŘ ά!ƴŘǊƻƛŘΦƳƪέ ŀƴŘ ǊŜǎƻƭǾŜ ǘƘŜƛǊ 
variability by evaluating their conditional statements and execute their compilation 
commands. In total Android 6 contains 2834 modules, each containing a file called Android.mk 
Figure 11 shows a sample 
Android.mk file. These files make use 
of a small subset of the Make 
language and assign values to a set of 
predefined constants similar to the 
product configuration files. After 
setting the path to the current 
directory (line 1) and clearing all 
previously set variables (line 2, this is necessary since these Makefiles are not executed in 
isolation but included by a global Makefile), the list of source files of the current module is 
defined (line 3) together with the name of the module (line 4) and any compiler flags that 
should be added when building the compiler command (line 5). The compiler command is 
then constructed according to the predefined rules for compiling a static library (line 6). 
 

3.3.4 Source Code 
 
 

 
Figure 12: Android source code [22] 

The source code of Android is organized into 2834 modules which can be hierarchically nested. 
According to the analysis conducted by Zhang [22] the majority of Android is implemented in 
C/C++ code (~120.000 C/C++ files) followed by Java (~50.000 files). With 4475 Makefiles, the 
build system in Android is highly distributed with each module having their own Makefiles. 
Overall, it is clear that the Android source code is highly heterogeneous by allowing the use of 
a variety of different programming languages like Java, C, C++, Python, Go, Javascript, etc. 

1. LOCAL_PATH := $(call my-dir) 
2. include $(CLEAR_VARS) 
3. LOCAL_SRC_FILES := healthd_board_default.cpp 
4. LOCAL_MODULE := libhealthd.default 
5. LOCAL_CFLAGS := -Werror 
6. include $(BUILD_STATIC_LIBRARY) 

 

Figure 11: A simple Android.mk file 
II. EXAMPLE SYSTEM: ANDROID 

In this paper, we selected the Android operation system (i.e., 
Android 5 and 6) as the example system for analyzing the build 
dependency structure and further comparison. Considering the 
complexity of the Android system, we have conducted a 
preliminary investigation of the Android code base, which 
actually contains different programming languages. As shown 
in Fig. 2, the code base of Android 6 mainly contains source files 
in C/C++, Java, Python, Go, Bash, and JavaScript. There are 
also other files like makefiles, libraries, packages, configuration 
files, webpages, and so on. The analysis of the Android build 
dependency structure should consider all these programming 
languages and related source files. 

 

Fig. 2. Number of Source Files in Android 6. 

III. BUILD DEPENDENCY ANALYSIS 

This section introduce the build dependency analysis 
approach and the case study on the Android 5 and 6. Fig. 3 
shows an overview of the Android build dependency analysis. 
First, build logging and build parsing are conducted to extract 
the build dependency structures of Android 5 and 6 respectively. 
Then the extracted build dependencies and related artefacts are 
compared. These steps are elaborated in the following 
subsections. 

 

Fig. 3. Overview of the Android Build Dependency Analysis. 

A. Build Logging 

The goal in this first step is to monitor the build process 
including all executed build commands (also called the build 
recipes), their execution time, and their invocation relationships. 
After investigating different existing techniques and evaluating 
their applicability, we eventually developed a logging approach 

and managed to capture all this information by instrumenting the 
build process accordingly. As the build process is usually 
conducted by the GNU Make tool (also in building Android 
systems), the solution idea is to specify the execution shell of the 
Make tool as a dedicated Bash shell script, which is actually a 
wrapper of the Linux Bash. As the Make tool will pass each 
build command to the Bash script as an argument, the script can 
not only capture and execute the command but also capture the 
execution time of the command. As a build command may 
invoke other commands (via the same shell script), the 
invocation flow is also captured recursively. Finally, the 
dynamic build jobs are captured during the build process in a 
tree structure and saved in an XML log file. 

In the Android study, the build logging was conducted as a 
dynamic analysis during the building of Android 5 and 6 
respectively, which resulted in two separate XML files 
documenting a huge amount of build jobs. It turned out that the 
build process of Android 6 contains 199466 build jobs. While 
the captured commands involves all used compilers and linkers 
(e.g., gcc, g++, clang, clang++), the most executed commands 
during the Android build process were actually system 
commands (e.g., echo, mkdir, rm, etc.) that do not produce any 
build artefacts. The logging results enable further extraction of 
dependencies between artefacts as well as corresponding 
measurement, visualization, and comparison, which are 
described in the following sub-sections. 

B. Build Parsing 

Given the captured build jobs from build logging, the next 
step is to extracted build dependencies. Each dependency 
represents a build job and contains the information of the build 
command name, input and output artefacts, build duration, and 
the related makefile. The parsing step is implemented in Python 
scripts and includes several sub-steps as below. 

1) Parsing build commands: The command name as well 

as input and output artefacts are extracted by parsing the 

executed build command string in the build log. To this end, a 

command parser is implemented for parsing these build 

commands. 

2) Parsing build duration: The duration of each build 

dependency indicates the time used for building the output 

artefact in the corresponding build job, which is extracted from 

the build log. 

3) Tracing header fi les: In many cases the executed build 

command string only contains a header directory, while the 

used header files are not specified. Fortunately, in the C/C++ 

build jobs (which is the majority in the Android build process) 

such header file information can be extracted from the 

dependency files (.d files specified by the -MF option in the 

C/C++ build commands). 

4) Makefi le mapping: Executed build commands are 

written in makefiles. In order to complete the build dependency 

knowledge, the related makefiles are identified based on 

makefile parsing and mapped to the build dependencies. 

5) Parsing dependency chains: As depicted in Fig. 1, the 

build artefacts are likely to be inter-related (i.e., an artefact is 

built as input of another build job). In this case, the build 
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4 Analysis 
4.1 Configurability of Android 

4.1.1 Qualitative Analysis 

4.1.1.1 Configuration mechanisms 
 

Product Configuration 
 
Figure 13 depicts an excerpt from the product configuration of a Nexus phone (codename 
shamu). Notice that the configuration is not created from scratch, but inherited from another 
configuration (line 1-2). It starts by initializing basic information like the product name, device 
name, model and manufacturer (line 3-6).  
The constant PRODUCT_PACKAGES lets you define a list of modules to be build. Using this 
mechanism, you can also add your own modules (defined in the product-specific device folder)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to extend Android. Each module throughout the Android source code contains a module 
specification in the form of a special Makefile that defines among other things the name of 
the module. Notice that there is neither a global definition of all modules nor is there any 
definition of dependencies between modules.  
PRODUCT_COPY_FILES defines a list of files that are copied during the build process to another 
location (syntax source:target, line 8). This is a customization mechanism commonly used to 
define your own layout, look & feel, runtime configurations or other resource based 
information. Extracting variability from code and putting it in a resource file like an xml or 
configuration file is good practice since it lets you alter your product without recompilation or 
touching the code. Using this mechanism, you can for example define your own layout files 
and copy them during the build process to override the default layout. 
Not all variability is resolved during build-time. Android makes extensive use of property files 
which are read at runtime. Values for properties can be set using the   
PRODUCT_PROPERTY_OVERRIDES constant (line 9).  
PRODUCT_LOCALES allows to define which languages should be preinstalled (line 10). 
 
 
 

  # Inherit from the common Open Source product configuration 
$(call inherit-product, $(SRC_TARGET_DIR)/product/aosp_base_telephony.mk) 
 
PRODUCT_NAME := aosp_shamu 
PRODUCT_DEVICE := shamu 
PRODUCT_MODEL := AOSP on Shamu 
PRODUCT_MANUFACTURER := motorola 
 
 
PRODUCT_PACKAGES += \  
    Launcher3 

  PRODUCT_COPY_FILES += \     device/moto/shamu/init.shamu.rc:root/init.shamu.rc 
  PRODUCT_PROPERTY_OVERRIDES +=  persist.ims.disableDebugLogs=1 
  PRODUCT_LOCALES += en_GB de_DE es_ES fr_CA 

1 
2 
 
3 
4 
5 
6 
 
 
7 
 
8 
9 
10 

Figure 13: Product configuration excerpt from device/moto/shamu (device.mk) 
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Board Configuration  
 
As explained in section Board Configuration on page 20, the Board Configuration has no 
defined configuration mechanisms. Neither the possible configuration constants, nor their 
possible values or their semantics are defined in any way. 
 

4.1.2 Quantitative Analysis 

4.1.2.1 Configuration Options 
 
To get an impression on what is actually configurable within Android, we analyzed how many 
configuration options exist. Specifically, we studied the board configurations available in 
Android 6 since most of the variability implementation is hardware-related. 
The data extraction was performed by building a simple Makefile parser that is able to parse 
Androids board configurations and extract the (constant, value) pairs. In this step we ignored 
any conditional statements (which rarely occur), but did include the constants in their body in 
our result. By parsing all available board configurations and merging the results we know how 
many different values where used for each constant. Although we cannot claim to get a 
complete result with this approach, it is a first approximation and the best we can do with the 
data that is publicly available. 
The resulting data in visualized in Figure 14 in form of a histogram. We analyzed all available 
26 board configuration files of Android 6 and obtained 158 unique constants. The y-axis shows 
the amount of configuration constants and the x-axis depicts the frequency of the amount of 
different values used.  
This result clearly shows that only a small fraction of all configuration constants actually has 
more than one possible value among all available configuration files. 113 constants only have 
a single value (71%) while only 20 configuration constants (13%) have 5 or more values and 
can be regarded as real variability. 
The natural questions that follows is: What do the configuration constants define that are 
highly variable? To party answer this question we also included Figure 15 displaying the name 
of each configuration constant. Obviously, extensive domain knowledge is required to fully 
answer this questions but we can make some observations from the constant names. 

 
Figure 14: Possible configuration options for board configuration constants. The results were obtained by analyzing all 

available 26 board configuration for Android 6 release 1. 
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Figure 15: The amount of distinct values obtained for the configuration constants in Android 6 board configuration files. The 

figure only shows those configuration constants that have at least two different values among all configuration files. 

From the names of configuration constants in Figure 15 we can draw the following 
conclusions:  
Fist, several of those constants that are highly variable depict partition sizes or block sizes with 
numbers (*_PARTITION_SIZE, *_BLOCK_SIZE). Second, some of these configuration constants 
are used for implementing module replacement and therefore specify include directories (e.g. 
BOARD_SEPOLICY_DIRS or *_BDROID_BUILDCFG_INCLUDE_DIR). Third, many constants refer 
to the CPU or architecture of the target device (TARGET_ARCH_VARIANT, TARGET_CPU_ABI, 
TARGET_ARCH, TARGET_2ND_ARCH_VARIANT). Thus, this seems to be one of the major 
source of variability among the different board configurations.  
Looking at the naming pattern of constants, it seems like at one point a naming pattern was 
chosen (e.g. prefix TARGET_* for specifying properties of the target device or BOARD_* for 
encoding that this constant is defined in the board configuration). But through the evolution 
of the system the configuration files got cluttered with new constants that did not follow this 
rule (e.g. OVERRIDE_RS_DRIVER or MAX_EGL_CACHE_SIZE) which makes any automated 
analysis were difficult.  
 

4.1.2.2 Configuration Impact 
 
The logical next question to ask is: 

1. Which of these configuration constants has the highest impact? 
2. Where do these configuration constants have an impact? I.e. is variability resolved in 

global Makefiles or locally in individual modules? 
 
To answer these questions, we searched all of Androids Makefiles for the names of the board 
configuration constants. Obviously, a true analysis of Makefiles (including scanning and 
parsing) is not feasible within this project. Therefore, we rely on a purely textual search here 
making use of regular expressions based search programs like grep.  
In this analysis, we differentiate between three locations within Android. First, the device 
folder which contains (besides the configuration) vendor-specific modules and apps. Second, 
the build folder which contains global build files that direct the overall build process and define 
reusable constants and functions. Any other Makefile must belong to ordinary Android 
modules which form our third category. By making this distinction, we can infer whether 
constants have a global impact (if they are referenced mostly in global build files) or whether 
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the impact is distributed among multiple modules (if they are mostly referenced in local 
module-specific build files). 
The result of our analysis is depicted in Figure 16 in a stacked area plot. The total amount of 
area colored for a specific constant is the total amount of references of this constant. This 
number is then broken down into the individual categories DEVICE, BUILD and MODULE by 
using different colors. 

 
Figure 16: Textual References of board configuration constants in Androids build files. The figure distinguishes between build 
files in the device-folder (DEVICE) which belong to vendor-specific modules, build files in the build-folder (BUILD) and files in 

individual Android modules (MODULE). Only the 30 most references constants are shown. 

The target architecture (TARGET_ARCH) is the most referenced board configuration constant 
with almost 400 references. It is being referenced in device-specific Makefiles, global 
Makefiles but mostly in the Makefiles of individual Modules. Followed by the target board 
platform (TARGET_BOARD_PLATFORM) which is referenced about 200 times. Interestingly, 
this constant is only referenced in device-specific modules (DEVICE) and local Android 
modules (MODULE) and not in global Makefiles. With about 100 references, the third most 
referenced constant is the second target architecture (TARGET_2ND_ARCH) which has been 
introduced for 64-bit Android builds and is referenced mostly in global Makefiles. 
From this analysis, we can draw the following conclusions: 

1. Only a small set of constants have a large amount of references throughout the 
Android build system while the great majority only have very few references. The 
amount of references follows a power law distribution, a phenomenon that also 
describes the number of links on the internet, file sizes, etc. 

2. The target architecture and board platform are by far the constants with the highest 
impact, mostly on individual modules. 

3. The majority of references are in device-specific or regular Android modules (~70% of 
all references). Therefore, the architecture and board platform variability in Android 
has be to resolved in individual modules. 

 
 
 
 
 






















