I.: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Guided Research Project

Analyzing the Variability Realization in Android

Nicolas Fu3berger
Student Number: 384507

Advisor: Dr. Bo Zhang

Department ofComputer Science

TU Kaiserslautern

Table of Contents

R | Vi Yo 18 [ox 1 o o TR 4
1.1 1Y/ 1Y Z= U1 o] o 4
1.2 Problem StatemMeENt.......... oo et e e e eea s aarne 4

1.2.1 ReSearch ProbIEMS........ooo i a e e e e e 4
1.3 ReSearch Method...........ooiviiii e eer e 5
1.3.1 ReSEArCh QUESHIONS.cceeeeeiiee ettt e e e e e e e e e e e e e aaeaaaeaaaaaaaaeens 5
1.3.2 RESEAICH PrOCEUULE......cco et e e e e e e e e e e e e e aaaeeaeeanaeaeaeesd 6
1.4 Research ContribULION.............iii e e e e 6
15 RESEAICN SCOPEo 6
1.6 RS 10 =T/ 6

2 o 11 o F= o 1SR 7

2.1 SEALE OF TNE AT e e e e e e e e e e e e e e et eeee e 7
2.1 1 TeIMINOIOGY....ccci i e e e e e e e e e e e e e e e aaaaaaaaaeaaeaeeeaeeaaaaaans 7
2111 SOftware ProdUCT LINE.......c.eeiiiiiiiiii et e e e e e e e ana e eee e 7
2,002 VaAlTADIIIEY.ccee e e e e e 7
2113 ST LU £ TP P PP TRPPPPPP 8
2.1.2 BiNAING TIMIE ..ttt e e s e e e e e s st e e e e e e e s nn b e e e e e e e e nnnnees 9
2.1.3 Overview of Variability Realization TEChNIQUES...........cooviiiiiiiieeiiiiieeeee e 10
2131 Conditional ComPIlALION..........ccoieiiii e e e e ———— 10
2.1.3.2 CoNditioNal EXECULION........ccoii ittt ee ettt e e e e e e e e e e e e e e e s e e aaneees 11
2.1.3.3 INheritance/PolymOrphiSM.........cooiviiiic e s 12
2.1.3.4 Module REPIACEMENL.......uiiiiiiiiiiee ettt e e et e e e s sibreeeeeeaaes 13
2.1.3.5 ASPECE OFENTALION.eiiiiiiiiiiie ittt e e s et bt e e e enbre e e e e e snebeas 13
2.1.3.6 Frame TECHNOIOGY........cueiiiuiiiieiiiiiiee ettt ettt e e ree e e s ennbeas 14

G B N 4 o | 0] o PR 15
3.1 ANdroid ArChiItECIUIE........coe e 16
3.2 Android from a Product Line Perspective...........cooiiiiiiiiiiii et 17
3.3 Conceptual Architecture of ANAroid............ooooiiiiiiiii e 18

G0 Tt R O 1= V1 PSPPI 18
3.3.2 Android CONFIQUIATION........ciiiiiiiiiiiee et e s e e e nnnr e 18
3.3.21 Product Configuration..............ooeueiiiiiiiiiiii e 19
3.3.2.2 [=To =10 I @] a1 ile U] =1 o) o I 20
3.3.3 ANdroid BUIld SYSTEML........eiiiiiiiiiiiiiiiie ettt 20
.34 SOUIMCE COUE.. ... uuiiiiiee ettt e e ettt e e e e e sttt e e e e e s st e e e e e s snnntaeeeeeeeeassseeeeeeeaannn 21

A ANAIYSIS. .ttt e e e e e e e e et e e e tararraanaane 22

4.1 Configurability of ANAroid............ooiiiiiiie e 22

4.1.1 QuAltatiVE ANAIYSIS.... ..ttt e e e e e e e e e e e e e ———————— 22
4.1.1.1 Configuration MECHANISIMS.........coiiiiiiiiie e 22
4.1.2 QuUAaNtitative ANAIYSIS.......cciiiiieei e aaaaaaa s 23
4.1.2.1 Configuration OPLIONS.......ceiiiiiiiiiee ettt ieee ettt e e et e e e s bt e e e s snbneeeeeeanes 23
4.1.2.2 Configuration IMPACL........coiiuiiiiiiiiiii et e e e 24
4.2 Variability Mechanisms in Configuration / Build System / Source Code.................. 26
4.2 1 QUANTALIVE ANBYSIS.....ciiieieiiie ettt 26
42.1.1 OVBIVIBWL. ...ttt ettt et e oottt et e et e e e e e e e e e e e ab b bbbt e e e e eeaaaeeesaaannnbbbbneeeaaaeans 26
4.2.1.2 Conditional COMPIIALION.coiiiiiiiiiiii e e e e e e e 26
4.2.1.3 CoNditioNal EXECULION.......ccoiiiiiiiiiie ettt e e e e e e e e e s e neees 29
S 0 S |V o To [0 [S LT o = Vo =T o 1= o PSP 30
4215] =14 7= Vg o] SRR 32
4.2.2 Quantitative ANAIYSIS........cuuuuiiiiiii e e 35
4.2.2.1 Conditional Compilation in SOUrCe COE..........cceviiiiiiiiiiiiiiiie e 35
4.2.2.2 Conditional Execution in Build SYStEML..........cccciiiiiiiiiiieiie e 42

2

5 CoNCIUSION & FULUIE WOTK ... e 43

B REIBIENCES. ..o e e 45

1 Introduction
1.1 Motivation

With ever increasingsoftware complexity, new engineering methods are needed to meet
guality demands and a short tirde-market. Especially the customization of products for
different market segments, different end users and different-gases has been a reason for
increasiig complexityTo delaythese design decisioras much as possible, variability is often
shifted from hardware to softwareThus, a new set of engineering methods is needed to
develop multiple software variants while at the same time meeting quality an@-ton
market goalsSoftware product lineengineering hagmerged as a vibrant research figtl
address these challenges. Software Product Lines are developed by systematically managing
variability while taking advantage of commonality to achieve the nesgsquality and time

to market by strategic reuse.

There are many successful cases in industry, where methods of software product line
engineering have been successfully applied, most famously presented in the Product Line Hall
of Famé, often reportingspectacular results like a ROI of 10:1 or a productivity improvement
of 360% (Cummins inc.). Howevexperiencereports from industry are mostly at a very
abstract level since theyeed to protect their business from the competition. Especially the
sourcecode of these product lines is not available to researchers.

Therefore, researchers have turned to publicly available open source product lines. Most
famously the Linux Kernel has been studied extensively by the product line comr(rigity
[1][2][3]). However, when it comes to variability realization techniques, most stidmss

only on the usagef conditional compilation in source code. The analysis of Prepsocesde

can be easily automated, yields quantitative results and can be scaled to a large number of
product lineq3]. There is little empirical work (quantitatively or qualitatively) on the usage of
other known variability realization techniques like polymorphism or module replacement.
Additionally, most studies focus on the source code and variability in build system or
configuration is often neglectedWe intent to address this gap with our research by
investigating the variability realization in Android, a very ¥atbwn product line that hag

to the best of our knowledge not had any attention in product line research.

1.2 Problem Statement
1.2.1 Research Problems

From these observatiommentioned in the introductiorwe conclude the following research
problems:

P1:There is little knowledge (quatsitively or qualitatively) on the usage of variability
realization techniques in large product lines besides the usage of conditional
compilation in source code.

P2:Existing analysis focus only on the source code and rarely investigate the usage of
variability implementation mechanisms aonfiguration and build system.

1 http://splc.net/fame.html

1.3 Research Method

To address these research problems, we will sttiay variability realization ofarge open
source product lines. We will not only focus on the usage of conditional compilation in source
code but also investigate the usage of other wkelbwn implementation techniqueis source

code, build system and configuration fil&nce the vaability realization is also highly related

to the configuration mechanisms, we also study the configurability of Android.

We chose the Android operating system since it is a very popular software ecosystem that has
not been studied by the product line canunity’. Moreover, it is a very heterogeneous
software system incorporating many different open source projects and is characterized by its
decentralized development. Therefore, we expect to find not a consistent use of a single
variability realization telenique but the usage of many different techniques that are used
together.

1.3.1 Research Questions

We conclude the following research questions. While RQ2 addressed both P1 and P2, RQ1 can
be considered a prerequisite. Since each variation point can be uélynataced to some
configuration option, is it necessary to understand how Android is being configured in order
to understand how variability is realized.

RQ1:How Is Android being configured for a specific device?
RQ1.1 What configuration options exist?
RQ1.2What configuration mechanisms are used?
RQ1.3What is the impact of the configuration?

RQ2:How is variabilityealizedin Android?
RQ2.1 What variability mechanisms are used on different layers?
RQ2.21s the variability Implementation locaéid to individual layers or distributed
among multiple layers (crosscutting)?
RQ23: What is the quantitative usage of different variability realization techniques?

These research questions are addressed in the following chapters:

Tablel: Mapping of research questions to chapters

Research Question Chapter
RQ1.1 4.1.2.1
RQ1.2 41.1.1
RQ1.3 41.2.2
RQ2.1 4.2.1
RQ2.2 4.2.1
RQ2.3 422

2 Android has been studied froomacosystem perspectiie4], butto the bestof our
knowledge there has been no analysis of the variability realization in the operating system
itself.

1.3.2 ResearclProcedure

Our research combireequalitative and quantitative data on the variability realization in
Android.

Qualitative data like the configuration mechanisms or examples ferusage of different
variability realization techniques for different purposes are obtained by studying the official
Android documentation, existing literature and manually searching through the Android OS
source code.

Based on these findings we developeubls to extract quantitative data on the impact of
configuration mechanisms and the usage of different variability realization techniques. All
tools have been developed in Python and are heavily based of, Katbol developed by
Google that can parse drpartially evaluate Makefiles. Based thhe Makefileabstract syntax

tree created by Kati and specific variable names used in Androids Makefiles, we can then
automatically detect different variability realization techniquéslditionally, the VITAL tool

[4] is used for extracting the usage of preprocessor commands in C/C++ source code.

1.4 Research Contribution

Our main contribution in this project is the generation of empirical data (qualitative and
guantitative) on the variability realization in Android, a large open source software ecosystem
that is currently an open research topic. This includes qualitaawe dn the usage of different
variability realization techniques and different configuration mechanisms in Andigedwill

also present quantitative data on the possible configuration options, configuration impact and
the usage of variability realizatiorechniques.To generate this data, we present a new
analysis method for extracting variability data from Mdlaesed open source systems and
implemented the necessary tool support to automate this analysis.

1.5 Research Scope

There are different flavors of Anoid for smart watches, smartphones, televisions, cars, which
can altogether be viewed as a product line. But in this report, we will look at AndrdidrOS
smartphones/tabletsand treat this version of Android alone as a product lifleerefore, we

will only focus on variability mechanisms bound at construction tgimee this is one of the
main variability drivers for smartphongglthough Android also includes mechanisms for
runtime variability (e.g. through property files, apps, etS)milarly,in our quantitative
analysis we will focus on variability mechanisms related to hardware variability (i.e. defined in
Android board configuration).

1.6 Summary

Chapter two introduces the terminology and foundational knowledge about product lines,
variability andbinding times. Additionally, the variability realization techniques commonly
found in literature are presented. In chapter three the target system Android, its architecture
in terms of configuration, build system and source code is explained. Based upgochépter

four contains the analysis results concerning And&idonfigurability and variability
implementation. We present the most important configuration mechanisms and analyze their

3 https://github.com/google/kati

impact on the rest of the system. AdditionaNsariability realizéion techniquesn Androidare
presented, both, in terms of typicaxamplesand quantitative results on the usage of
different techniques.

2 Foundations
2.1 State of the Art
2.1.1 Terminology

2.1.1.1 SoftwareProduct Line

a! az2¥dsl NB LINPsBfumdaintehisivg/s$stersisharing a &ihmad, fnanaged
set of features hat satisfy the specific needs of a particular market segment osionisand

that are developed from a common set ofre assets in a prescribed velp]. Instead of
developing each product from scratch, product limgaeering is about taking advantage of
commonality and carefully managing variability. New products can be assembledIfeady
existing parts (core assetsjilored to individual costumers. Despite talorade products, the
expected benefits from adoptg a product line over single system development include
reduced costs, improved quality and fast time to marjjt

It is clear that these advantages do not come for free. A product line requires a serious upfront
investment for domain engineering processes like scoping orldpreent of core assets.
Figurel shows the expected costs for developisgyeralsystems from scratch compared to

a product line approachA small number of systems can still be developed with less effort
using a singksysem development approach since there is no investment into strategic reuse
required. Only if many different (but similar) systems are developed such an upfront
investment pays off in the long term.

Accumulated
Costs

Single Systems
— — — — System Family

-
”‘
——————
_ -
”’
- Lower Costs

UpFront _1__--2 per System

Investment

approx. 3 Systems Number of
(Software Engineering) Different Systems

Figurel: Comparison of coster single system development and prodlioe developmen(7]

2.1.1.2 Variability

Variability is a very general concept within product line engineering and can tcefire
variability within a software development process as well as its resulting artefacts like
requirements specifications, architecture documents, source code or tests{@]. For our

7

purpose,we want to use a definition of variability that is more targedtowards variability
implementation+ | NAl 6 Af AGé& OFy 6S RSTAYSR a aGKS |6
O2YY2y aSi [@F FINILSTIFOGaE

Anastasopoulos and Gac¢®] differentiate between multiple types variability which are

shown inTable2. In general, one can differentiate between positive and negative variability,

where positive variability adds functionality and negative variability removes functionality.

Other categories denote the optional inclos of code/requirements/components, their
replacement (alternative) or change in their functionality. Another variability type is
concerned with a change in the platform or environment of a system. An example for such
variability is the migration of a ssn from a Unixbased enviroment to a Windowsbased

environrment.
Table2: Variability Typef]

Variability Type Meaning
Positive Functionality is added
Negative Functionality is removed
Optional Code is included
Alternative Code is replaced
Function Functionality changes
Platform / Environment Platform or environment changes

To describe variability even further Pohl introduced the notiowasfability subjecaindobject

[7]. A variability subjeck & &l @GF NAIFo6fS AGSY 2F GKS NBFf g2
AGSYE |y RhaRGIAYONAIONED | GFNAFOATAGE 202S00 Aa
adzo 2SO0 ¢ Ihygwan RS vafeNING éxample for a variability subject esdhoking

time of a stealkwhere possible instances (variability objects) are rare, medium rare or well
done.The manifestation of variability subjects in artefacts such as requirements, architecture

or code is referred to as\ariation point Jacobsondt f @ FANBR G AYy GNP RddzZOSR
Y2NB f20F0A2ya |G ¢KMOK 0G\KIST 223 Naed fitakioh pliag 3 f d NG
B NAFOoAEAGE 202S0(7]igchliéKarayantR 2 YIEA R SINNII KB O2 & 2 N
iPhone. Posble variability objects include green, blue, black, yellow, etc. However, Apple only

offers silver, gold, rose gold and black as possible variants for this variability object. Therefore,
variants might only be a subset of possible variability objects.

x

2.1.1.3 Fedure

The term featureRS A ONA 60 S & dal O KusdwlisiDlé BeNavidr (ofi e0sbftw@eNJ Sy R
& @ & G[6)anrd is typically used in the context of a product line to distinguish multiple
products.

A product can be thought of as a set of features, &alted feature selectionThisconcept
allows to easily communicate product characteristics to all stakeholders while also enabling
to manage variability and commonality in all software lifecycles.

Anastasopoulos and Gadg) definemultiple feature types (cfTable3) that constrain feature
selection. Anandatory feature must be present in all products, while an optional feature may
only exist in a subset of products. Constraints between features include alternative features
(i.e. only one of several featusecan le selected) and mutually inclusivend exlusive
features.

Table3: Feature Typel9]

Feature Type Meaning
Mandatory The featuremust be always included.
Optional The feature is an independent complement th
may be included or not.
Alternative The feature replaces another feature when
included.
Mutually Inclusive In order for the feature to be included, specif
other feature(smust be included as well and
vice versa.
Mutually Exclusive In order for the feature to be included specifi
other feature(s) must be left out and vice vers

Features and theirelations ae typically specified in a feature edel whose graphical
representation is called a feature diagram. An example for a feature diagram of a graph library
is depicted inFigure2. The diagam is a tree whose nodes denote features and different
notations for parentchild connections encode different feature types. Additionally,
constraints for feature selection may be added as propositional logic.

In Figure2, an empty circle on top of a feature denotes on optional feature, while a filled circle
denotes a mandatory feature.nfempty circleat the bottom of a node defines a ormut-of-

many relatiorship, so that only one of the child nodes may be selected for any product. A filled
circle defines a someut-of-many relationship and any number of children may be selected
for a product. Mutually inclusive and exclusive feature types are defined vidraomns. For
example, the MSG algorithm can only be selected if the graph is undirected and weighted
(MS@\ Undirected@Weighted).

Graphlibrary

O @)
Weighted Algorithm

Search

Edge Type

’ Directed | | Undirected

’ BFS ‘ ’ DFS ‘ ’ Cycle

MST => Undirected A Weighted
Cycle => Directed

Figure2: A feature diagram for a graph libraf§]

2.1.2 Binding Time

When deriving a product from a common set of assets, at one point the decision needs to be
made how to resolve variability added through variation points (i.e. which features to include
or exclude in a product). The time at which this decision is madalledcthe binding time
Depending on the domaiandon the business objectivier a product line it can makesense

to make this decision sooner or later.

For example, in embedded systems where resources are often scarce variability is bound
rather soonerthan later so that the code for a single product can be optimized and needs as
litle memory as possible. In other domains like the smartphone industry where additional
functionality can be added by usdny installingadditionalapps,such variability neds to be
present at runtime.

Svahnbergeta[S]RSTAY S GKS F2ff2¢gAy3d LIKIFasSa 27 |
be bound:Product architecture derivation, compilation, linking and runtinDairing product
architecture derivationvariation points in tle product line architecture need to be set to a
particular variant to derive the architecture for a particular product. Examples for variation
points may be optional components that correspond to an optional feature or selecting a
particular specializatiorof a general component (e.g. depending on the target hardware
platform). The most common technique for bounding variability at compile time is the C/C++
preprocessor which scans the source code and adds or resnmemain parts. During linking,

the objectfiles created by the compiler are built into an executable. This step depends on the
chosen programming language and technologies that are used. During runtime, it may be
possible to extend the system by adding new variants (e.g. downloading apps on the
smartphone) or to choose among a set of predefined variants (e.g. by changing the settings in
an application).

2.1.3 Overview of Variability Realization Techniques

In thissection,we will give a brief overview of variability realization techniques commonly
found in literature We will only consider mechanisms that bind variability as early as compile
time. In particular we will not covgeroduct architecture derivation as an earlieinding time

[8]. We will look specifically at variability mechanisms in source code, although some
mechanisms can also be used on other artefacts like requirements specification or
architecture documentation.

Variability Mechanism Binding Time Implementation | Granularity
Conditional Compilation | Compilation Preprocessor Any
Conditional Execution Runtime Conditional Limited, mostly
Statements Statements
InheritancéPolymorphism| Compilation/Runtime Language Any
Constructs
Module Replacement Compilation/Linking | Build System Any
Aspect Orientation Compilation Specific tools for | Limited, mostly
code weaving statements
Frame Technology Compilation Specific tools Any
Cloning Compilation Copy&Paste, Any
Branches

Figure3: Overview of variability mechanisms commonly found in literafiDe¢a adapted fronj11].

2.1.3.1 Conditional Compilation

Description

Conditional compilations a widely used variability mechanism in open source software as
well as in industrial softwarg 2]. It allows programmers to conditionally add or remove code
before conpilation based on a configuration. This variability is bound at construction time
which allows for highly optimized and memory efficient code. This mechanism can be used to
conditionally compile single statementslasses, modulesthere is nolimit for application in

terms of granularity.

10

ae:

Implementation

Conditional compilations typically implemented using a preprocessor, most famously the
C/C++ preprocessor. Usingifdef directives, any part of the code can be conditionally
compiled based on somidefinedefinitions.

1. #ifdef __WINDOWS 1. #ifdefHAS_HEAT_SENSOR

2. #include<winsock2.h> 2. Sensor sensor = new HeatSensof
3. #else 3. Observer.register(sensor);

4. #include<sys/socket.h> 4. #endif

5. #endif

Figure4: Example for conditional compilatiaising the C/C++ preprocess(ireft) © include a fé
based on the operating system. (Right) To add functionality for a heat sensor.

Figure4 shows two examples for the usage of the C/C++ preprocessor. The left example
demonstrates the conditional inclusion of files based on the target operating system (OS is
Windows if __ WINDOWS ___is defined throdglefine _ WINDOWS) and the right example
shows the addition of a heat sensor based on if the target product supports such a sensor (if
HAS_ HEAT_SENSOR is defined thrédgfine HAS_HEAT_SENSOR

Although preprocessors are mostly used for code, they work on anybtesed artefact and

can also baised for requirements documents, architecture documentation, etc.

Advantages & Disadvantages

Conditional compilations very easy to apply using available preprocessors. These are not
limited to code but can be applied to any texased document since #y are oblivious to the
syntax.

However, for a long term benefit their usage reqsiseme discipline. Since the preprocessor

is also used foother things beside variability implementation (e.g. constant definitions), its
usage as a variability mechanisshould be clearly separable by employing a prefix like
HAS_ PREFIX. This also allows further automated analysis regardingasida and dead
code detectior{13]. The developer should also care for simple logical expressions #ifsldé
statements and avoid highly nestéifdef codeto keep the code maintainabld.4].

2.1.3.2 Conditional Execution

Description

Conditional execution uses standard conditional statements to implement variability. In
contrast to conditional compilation these statements are executed at runtime and can thus
be used to implement runtime variability. Since these statements are palnegbtogramming
language, they need tobey its syntax rules and can only be used to implement variable blocks
of statements.

Implementation
Thebuild-in if-else or switchconstructsof programming languagesre used to implement
conditional execution. lorder to differentiate variability implementation from regular usage

11

of conditional statements, it is recommended that a specific variable naming pattern (e.g. a
common prefix) is chosen.

Advantages & Disadvantages

Conditional exeution is very easy to usand required no further tools since conditional
statements are part of every higher programming language. Since conditional statements are
also used for other things, there is risk of mixing the implementation of variability Wwéh t
rest of the code. A naming pattern of variables can solve this issue.

A disadvantage of this approach is the mixing of commonality and variability inside a single
file. For example, a new variant cannot be added without first understanding and themglte

the existing code. Like with conditional compilation there is also the risk of creating highly
nested or complex conditional expressions that increase maintainability over time.

2.1.3.3 InheritancéPolymorphism

Description

There are multiple differenvariability mechanisms related to inheritance or polymorphism
ranging from binding atompiletime to binding at runtime.

Mechanismscommonly found in literatureinclude subtype polymorphism, parametric
polymorphism(often called static polymorphisnandoverloading11][15] as well as multiple
inheritance, mixiAdbased inheritance, objedtased inheritancgd] and adhoc polymorphism
and casting15].

Implementation

The implementation of inheritanebased variability mechanisntgpically depends on the
specific type of mechanisms and the programming language. Mohethanisms can be
implemented in all objecbriented languages. For example, Java does not support multiple
inheritance (in contrast to C++).

More information on how to implement subtype polymorphism and parametric
polymorphism in C++ can be found1®] and[17].

Advantages & Disadvantages

A common advantage of inheritantx@sed mechanisnmisthe se@ration ofcommonality and
variability. For example, an abstract clasdled Sensorimplements the common behavior
across all sensors, while each specific sensor is implemented in a subclass. This technique is
often used in frameworks to allow developers to define extensions to the existing functionality
[11].

On the other hand, this approach of implementing variability and commonality in different
files does not scale well. With increasing variability, the amount of subclasses increases as
well, creating a complex inheritance treeurRime binding always adds a performance
penalty, and may also result in runtime errors (null point¢t4}.

12

2.1.3.4 Module Replacement

Description

Module replacement is usefdr selecting between files or subsystesfien stored in sibling
directories. Depending on the implementation technique this selection can take place during
compilation or linking.

Implementation

Module replacementis commonly implemented in C++, where an (possibly conditionally)
included headefile sekcts the right file to includer the header files have identical names
among sibling directories, in which case the selectian be done usinthe ¢l flag to séect

an include directory (compile time) gt flag to select a path to a linkedrhipy.

Advantages & Disadvantages

Like inheritancébased mechanisms, module replacement allows theassgpn of variants
but has no runtime overhead since variability is bound during compilation or linking.
However, variation points are not easily visilih code (in case the headers have identical
names) and may also involve the build system (e.g. to spdaificL flags). This problem can
be addressed by tool supporAnother problem is the handling of defaulis.g. in case of
optional variability)since a module needs to be selected at all tiedummy module may
solve this problenjl1].

2.1.3.5 Aspect Orientation

Description

Aspect orientation is a technique to address the problem of crosscutting concerns that result
in code duplication, scattering or tangling. It usescatied aspects to localize the code related

to these concerngito one code unitd ! y I & LIS O G ingconstruct tiiALRraapdulssy
theimpemeni GA 2y 2F | ONH. 3AadSpedt s thghIvealed ifitd heNdystiof
the program at specific locations (called joint points) using a process called aspect weaving.

Implementation
The implementation typically requires spediabl support (e.g. AspectJ) since code weaving
is not supported in most programming languages.

Advantages & Disadvantages

Similar to module replacementhis technique allows the separation of commonality and
variability. Additionally, it provides thmeans to localize implementation of features which
would otherwise be scattered across the code and result in duplicated code.

However, this technique can only be used with additional tool support since code weaving is
not supported in most programming lgonages. In contrast to techniques like inheritance or
conditional execution which useonstructs that every programmer is familiar with, this
technique will most likely require a learning phase before it can be applied.

13

2.1.3.6 Frame Technology

Description

Frame Technology is a variability mechanism developeBdy G. Bass¢t8] that allows to

separate those modules that change frequently from those that change less frequently. Fo
example, the implementation of common functionality across all products may not change

very often, whereas new features or changes to existing features may be more frequent. If
commonality and variability reside in the same file, each change has that@it® break the

common code although only the variable code needs to be changed. Using Frame Technology
GFNDBAGNI NBE GSEG LI NIa Oy oS8 YFEyF3aSR | a @I N&
Fa LI NOGAFE 2213 2NJAKNa2tFGSR NBGdz2NYy adal 6SYSy

Implementation
Similar to aspect orientation, the implementation of Frame Technotegyires special tool
support.A detailed example can be found[iB].

Advantages & Disadvantages

Like module re@cement or inheritance, this technique allows the agtion of common and
variable code but unlike other mechanispisdoes not need to respect the programming
language syntax when doing so.

This technique is not well known and not widely u§kt]. It requires special tool support and
additionaltraining.

14

3 Android

Android is the most successful mobile operating system of all time, currently owning a market
share 0f84.1% (according to Gartner, M2916). It is not only the major operating system
for smartphones, but also runs on tablets, wearables like smartwatches, televisions and
automotive multimedia systems. Clearly, such a platform needs to carefully manage
variability. After allthese diffeent kinds of devices greatly differ in terms of their provided
functionality, user interface, hardware, etc.

In this report we will focus solely on Androigrersion 6)or smartphones and tabletsjnce

this is the primary usage of Android.

Asus Nexus 7 cellular (2013) Asus Nexus 7 wi HTC(N2Xus93) Motorola Nexus 6 LG Nexus 5
(ffasus debo) (ffasus pood) (Ahtc pounderdfimoto shamuo()il ge hammer
Network
GSM / HSPA/ LTE No cellular No cellular GSM / CDMA / HSPA/ LTE GSM / CDMA/ HSPA/ LTE
Technology
LED-backlit LED-backlit IPSLCD AMOLED True HD IPS+
Display 7.0 inches 7.0 inches 8.9 inches 5.96 inches 4.95 inches
1200 x 1920 pixels 1200 x 1920 pixels 1536 x 2048 pixels 1440 x 2560 pixels 1080 x 1920 pixels
Chinset Qualcomm Snapdragon Qualcomm Snapdragon Nvidia Tegra K1 Qualcomm Snapdragon 805 Qualcomm MSM8974
p S4Pro S4Pro Snapdragon 805
CPU Quad-core 1.5 Ghz Krait Quad-core 1.5 Ghz Krait Dual-core 2.3 Ghz Denver Quad-core 2.7 Ghz Krait 450 Quad-core 2.3 Ghz Krait 400
GPU Adreno 320 Adreno 320 Kepler DX1 Adreno 420 Adreno 330
13 MP 8 MP
. 5Mmp . 5MP . 8 MP . Geo-tagging, touch focus, Geo-tagging, touch focus,
Primary camera Geo-tagging, touch focus, Geo-tagging, touch focus, Geo-tagging, touch focus, face detection, panorama face/smile detection
face detection face detection face detection P ! !
HDR panorama, HDR
Sensors Accelerometer, gyro, Accelerometer, gyro, Accelerometer, gyro, Accelerometer, gyro, Accelerometer, gyro,
proximity, compass proximity, compass compass proximity, compass, proximity, compass,
barometer barometer

Figure5: Android 6 devices and their HW/SW characteristics

Figureb depicts the specificatiofor different smartphones and tabts, all running the current
Android operating system version sikhe obvious variability among these devices is their
underlying hardware. They use different CPUs, GPUs, different display technologies with
different dimensions, different sensors and camerdhis includes optional variability (like
different sensors)and alternative variability (like CPU or GPU). In fact, the underlying
hardware is the only way, that megularsmartphone can stand outdm the competition.
Since the Android app store is apéo all Android smartphones, they can all download the
same applications. Therefore, any pure software variability can be eapiigated by third
party apps.For example, the LG Nexus 5 is the only device whose camera hais Isuilie
detection. Howeer, a quick search in the Google play store instantly reveals third party apps
that enable all other devices to achieve the same functionality.

15

3.1 Android Architecture

A look at the Android architecture gives a first clue on how hardware variabilityrig be
supported within Android.

ronlicaton ramenork containing I
. . .. APPLICATION FRAMEWORK

application framework containing the

sendard andreid APl veed by o L

developers to access basi

functionality. The Binder IPC proxie

enable the inter-process

communication between the
application framework and the system
services which are used by the
application framework to access the Gamens Service Activity Manager
underlying hardware.

The hardware abstraction layel
exposes a consistent interface tc
higher layers while allowing the other Media Services Other System Services
underlying hardware implementation R

to change. Tis isa common variability

mechanismat the architectural IeveIS“
that enables the support for camera

sensors, etc. without having to chang|
any of the upper layers.

Android is built on top of the Linux
kernel whose device drivers control th
hardware.

AudioFlinger Search Service

MediaPlayer Service Window Manager

Camera HAL Audio HAL Graphics HAL Other HALS

Audio Driver

Camera Driver (ALSA, 0SS, etc.) Display Drivers other Drivers

The Android architecture already giv
some insight into how this operating
system supports hardware variability:

Figure6: Overview of the Android architectujr21]

1. Android makes use of Hathat hide all hardware related variability from upper layers
by providing a consistent interfac€his is the location were hardware vendors can add
their custom implementations.

2. Android is built on top of the Linux kernel, which provides its own sophisticated
mechanisms for handling variability that have been studied in detail by the product
line conmunity. For examplethe Linux kernel can be compiled for many different
hardware architectures (like x86 or ARM) which allows it to run tablets,
smartphones, TVs, desktop pcs, etks we will later see, the Linux kernel is actually
not part of the Andoid source code, but is included as a precompiled binary.
Therefore, a lot of the variability is already bound and does not need to be considered
by Android.

16

3.2 Android from a Product Line Perspective

Table4: Android source code structui20]

Directory Content

Abi Minimal C++ Ruitfime Type information
support

Bionic |l YRNRARQAa Odzaid2yY |/

Bootable OTA, recovery mechanism and reference
bootloader

Build Build System

Cts Compatibility Test Suits

Dalvik Dalvik VM

Development Development tools

Device Devicespecific files and components

Docs Content ofhttp://source.android.com

External External projects imported into the AOSP

Frameworks Core components such as system service

Hardware HAL and hardware supg libraries

Libcore Apache harmony

Libnativehelper Helper functions for use with JNI

Ndk Native development Kit

Out Build output will be placed here

Packages Stock Android apps, providers and IMEs

Pdk Platform Development Kit

Prebuilt Prebuiltbinaries, including toolchains

Sdk Software Development Kit

System Embedded Linux platform that houses
Android

Tools Various IDE tools

Core Assets Application specific code

From an external perspective Android can clearly be seen as a Software ProduEidune.

5 showed some sample produatentaining commonality and variabilititat are allrunning

the same Android version.

As it turns out, Androidalso conforms to the model of a Product Line from an internal
perspective.Table4 shows the folder struetre of the Android source code, where cossats

FYR FLILX AOFGA2Yy ALISOAFAO lFaasSia | NBE Of SI NI &
specific assets like custom apps, layout files and other configuration Tiles.folders
highlighted in blue can be considered as core assets. These areid\sgecific modules, but

also other opersource projects that have been integrated into the Android platform. They

may contain variability that is resolved during the build process based on the selected
configuration. A specific product is derived by liing Android witha selectedproduct

O2y FAAdzNF GA2yd ¢KS NBadzZ GAy3a FAESEA | NB LI I O
build-time variability any more.

17

http://source.android.com/

3.3 Conceptual Architecture of Android
3.3.1 Overview

Configuration

Product Config
Board Config

Configuration

Build System
Global Makefiles
Module Makefiles (Android.mk)

Build System

Source Code Modules

Figure7: Conceptual Architecture of Arald. Refinement level 1 (left) and 2 (rigt

Conceptuallywe decompose Android into three layers (Eigure7). The configuratiodayer
comprises Androi@ confguration files that define its configuration space and act as input for
product derivation. Android defines different kinds of configurations at different layers of
abstraction, namely the product and board configuration. pheduct derivation process is
implemented by Androids build system that resolves variability based on the selected
configuration. This can have an effect on the overall build process (global Makefiles) or on
individual modules (module Makefiles). The smicode is organized in modules that can be
hierarchically grouped. Each module contains an Android.mk file that defines its compilation
process.

3.3.2 Android Configuration

Table5: Android Configuration Layel1]

Layer Example Description
Product myProduct, The product layer defines the feature specification
myProduct_eu of a shipping product such as the modules to

build, locales supported, and the configuration for
various locales. In other words, this is the name of
the overall product. [é]

Board/Device | Trout,goldfish The device/board layer represents the physical
layer of plastic on the device (i.e. the industrial
design of the device). For example, North
American devices probably include QWERTY
keyboards whereas devices sold in France
probably include AZERTY keyboards.[é]
Arch Arm, x86, mips, arm64 The architecture layer describes the processor
configuration and ABI (Application Binary
Interface) running on the board.

Androidspecifies three different layers of configuration with decreasing abstrattiosi. We
will focus on the first two, the product and board configuration since the architecture
configuration is part of the Linux kernel.

18

Configuration files in Android are regular Makefiles, although they only make use of a subset
of the Make languagelhey assign values to a set of predefined constants that will be used
during the build process to decide which modules to build, how to resolve their variability,
etc. Note that there is no tool support for creating a configuration. The recommended
approach is to copy an existing configuration and adjust it as necessary

3.3.2.1 Product Configuration

Inherit from the common Open Source product configuration
$(callinherit-product, $(SRC_TARGET_DIR)/product/aosp_base_telephony.mK

PRODUCT_NANHEaosp_shamu
PRODUCT_DEVIEEhamu
PRODUCT_MOD&E.AOSP on Shamu
PRODUCT_MANUFACTURERotorola

PRODUCT_ PACKAGES

Launcher3
PRODUCT_COPY_FH#HS device/moto/shamul/init.shamu.rc:root/init.shamu.rc
PRODUCT_PROPERTY_OVERRIO#eSsist.ims.disableDebuglLogs=1
PRODUCT LOCAKE®Nn GB de_DE es_ES fr CA

Figure8: Product configuration excerpt from device/moto/shamu (device.mk)

The product configuration is the configuration on the highest level of abstn. Although it

Aa R2O0dzYSyGSR Fa + GFSFGdz2NE ALISOATAOF(GAZ2YyEé X
features is inherently missing. Other product lines like the Linux kernel allow the user to select
which featuresshould be included in the crtent build and then magthis information to a

lower level configuration containing which modules to compile, which dependencies to
resolve and which parameters to choose. Android on the other hand does not provide any
such mapping and puts the burden ohet configuratorto select modules and to set
parameters in such a way that the desired features are included in the current Biglate9

shows an example product configuration from a Nexus phone. The configuration mechanisms
in the product configuration will be explained in detail in sectifmoduct Configuratioron
page22.

19

3.3.2.2 Board Configuration

According to the Androidpecification, the

board configuration represents the
GLKe&aAOlrt fFeSNI2TF
configuration certainly defines more

technical characteristics of the device on
lower level of abstraction than the produg
configuration. Examples ar#he processor
architecture, cp or wlan device. However

LJt

[l

in cortrast to the product configuration, the
variable names of the board configurati

and also their possible values are npt

defined by the Android specification whic

makes the configuration a tedious and error

prone taskThe constants defined in this

TARGET_CPU_ABI := armeata
TARGET_CPU_ABI2 := armeabi
TARGET_ARCHarm
TARGET_ARCH_VARIANT := araan@on

ARGET CPlk VARIANT. := krait A

NABLE ETsZWee U KS
TARGET_NO_BOOTLOADER := true
BOARD_KERNEL_BASE := 0x00000000
BOARD_KERNEL_PAGESIZE := 2048
BOARD_KERNEL_TAGS_OFFSET := 0x01E00000
BOARD_RAMDISK_OFFSET0xQ2000000
MAX_VIRTUAL_DISPLAY_DIMENSION := 2048
BOARD_EGL_CFG := device/moto/shamu/egl.cfg
BOARD_USES_ALSA_AUDIO :=true
WPA_SUPPLICANT_VERSION :=VER_0_8 X
BOARD_WLAN_DEVICE = bcmdhd
BOARD_WPA_SUPPLICANT_DRIVER := NL80211
BOARD_WPA_SUPEANT_PRIVATE_LIB :=
lib_driver_cmd_$(BOARD_WLAN_DEVICE)
BOARD_HOSTAPD_DRIVER := NL80211
XPo

RS

&

O«

configuration are referenced by globa
Makefiles as well as local Makefiles

individual modules and often appear in conditional statements. Therefore, there exists an

(BoardConfig.mk)

Figure9: Board configuration excerpt from device/moto/shami

implicit set of possible values for each constaBinice there is also nool support, the aly

option is to manually trace a constant through the build files in order to know their possible

values and impact.

3.3.3 Android Build System

Configuration

- Product
Configuration

Build System

~
Build Configuration

- lunch

v

- Board
Configuration

-
Global Makefiles

- build/core/*.mk

v

e
Module Makefiles

- Android.mk

.

J

Figurel0: Schematic overview of the Android build system

Androids build system is bad on GNU Make. But unlike mostalke-based build systems, it
does not use it recursively (i.e. build each subsystem independently by a recursive Make call).

Instead, it relies on file naming conventions and includes all files with a certain name

throughoutthe source code to build a gigantic Makefile during built time.
A schematic overview of the build system is depictedrigure 10. The build system is

decomposed il K S

! YRNRPARDYT1£€0 GKI G

0dzAf R O2y FTAIdzNIF GA2Y
control the overall build process (residing in build/core/) and module Makefiles (named

RSTAYS K2¢ Yy AYRADARdZ €

0dza Ay 3

GdKS

20

w»

a f

d

The Android builgorocess starts by selecting a product configuratiorb&obuilt using the

Gf dzy OK¢ (22t d ¢KS o0dzAf R LINRPOSaa Aa (GKSYy AYyAd
defined Makefiles in the build/core directorfhese Makefiles include (the MakeA ¢z $ &
operation is similarto a preprocessor #include) the configuration files of the previously
selected configuration and make use of their definitions to resolve variability and adjust the

build process accordingly.

The Android source code is decomposed into modules. Each module has a file called

G! YRNRPAR®PY1 ¢ GKIG RSTAYySa K2g SIOK Y2Rdz S a
include conditional statements referencing the variables from the product and/or board

coy FAIdzNF GA2yd ¢KS It 20t al(1STFAtSa oAttt AyOf
variability by evaluating their conditional statements and execute their compilation
commandsin total Android 6 contain8834modules, each containing a filellesl Android.mk

Figure 11 shows a sample LOCAL_PATH := $(calldiyy

Android.mk file. These files make uge include $(CLEARARS)

of a small subset of theMake LOCAL_SRC_FILES := healthd_board_default
language and assign values to a sef of tggﬁt_g/‘gLDA%'-Es\A;r':srea'thd-defa“'t
predefined co.nstan.ts S'm”ar to the include $(BUILD_STATIC_LIBRARY)
product configuration files. After

setting the path to the current
directory (line 1) and clearing al

previously set variables (line 2, this is necessary since these Makafdenot executed in
isolation but included by a global Makefile), the list of source files of the current module is
defined (line 3) together with the name of the module (line 4) and any compiler flags that
should be added when building the compiler command (line 5). The compiler command is
then constructed accordintp the predefined rules for compiling a static library (line 6).

ourLNE

Figurell: A simple Android.mk file

3.3.4 Source Code

java python
others 48666 8814

h
70898

Others h W Java xml W cpp mc

I W txt M Python go md Hs

cc html W Makefile sample W Java a
Hjs Hso M sh pyc

Figurel2: Android source cod@2]

The source code of Android is organized 2884moduleswhich can be hierarchically nested
According to the analysis conducted by Zh§##] the majority of Android is implemented in
C/C++ cod¢~120.000 C/C++ files) followed by Java (~50.000 fé#).4475 Makefiles, the
build system in Android is highly distributed with each module having their own Makefiles.
Overall, it is cleathat the Android source code is highly heterogeneous by allowing the use of
a variety of different programming languages like Java, C, C++, Python, Go, Javascript, etc.

21

4 Analysis

4.1 Configurability of Android
4.1.1 QualitativeAnalysis
4.1.1.1 Configuration mechanisms

Product Configuration

Figure13 depicts an excerpt from the product configuration of a Nexus phone (codename
shamu). Notice that the configuration is not createdrfrgcratch, but inherited from another
configuration (line 12). It starts by initializing basic information like the product name, device
name, model and manufacturer (line6j.

The constanPRODUCT _PACKAGEESyou define a list of modules to be buildsing this
mechanism, you can also add your own modules (defined in the preshedtificdevicefolder)

Inherit fromthe common Open Source product configuration
$(callinherit-product, $(SRC_TARGET_DIR)/product/aosp_base_telephony.mK

N -

PRODUCT_NANMHEaosp_shamu
PRODUCT_DEVIEEBhamu
PRODUCT_MODE.,AOSP on Shamu
PRODUCT_MANUFACTURHRotorola

o0k W

7 PRODUCT_PACKAGES
Launcher3
8 PRODUCT_COPY_F#HS device/moto/shamul/init.shamu.rc:root/init.shamu.rc
9 PRODUCT_PROPERTY_OVERRIO#ESsist.ims.disableDebuglLogs=1
10 PRODUCT_ LOCAEE®Nn _GB de DE es ESfr_ CA

Figurel3: Product configuration excerpt from device/moto/shamu (device.mk)

to extend Android. Each module throughout the Android source code contains a module
specification in the form of a special Makefile that defines among other things the name of
the module. Notice that there is neither a global definition of all modulesisadhere any
definition of dependencies between modules.

PRODUCT COPY_Fdefines a list of files that are copied during the build process to another
location (syntax source:target, line 8). This is a customization mechanism commonly used to
define your own layout, look & feel, runtime configurations or other resource based
information. Extracting variability from code and putting it in a resource file like an xml or
configuration file is good practice since it lets you alter your product without redatrgn or
touching the code. Using this mechanism, you can for example define your own layout files
and copy them during the build process to override the default layout.

Not all variability is resolved during buiidne. Android makes extensive use of pesty files
which are read at runtime. Values for properties can be set using the
PRODUCT PROPERTY_ OVERenstmnt (line 9).

PRODUCTOCALEallows to define which languages should be preinstalled (line 10).

22

Board Configuration

As explained inextion Board Configuratioron page20, the Board Configuration has no
defined configuration mechanisms. Neither the possible configuration constants, nor their
possible values or their semantics are defined in any way.

4.1.2 Quantitative Analysis
4.1.2.1 Configuration Options

To get an impression on what is actually configurable within Androiganeéyzed how many
configuration options exist. Specifically, we studied the board configurations available in
Android 6 since most of theariability implementation is hardwareelated.

The data extraction was performed by building a simple Makefile parser that is able to parse
Androids board configurations and extract the (constant, value) pairs. In this step we ignored
any conditional stagments (which rarely occur), but did include the constants in their body in
our result. By parsing all available board configurations and merging the results we know how
many different values where used for each constant. Although we cannot claim to get a
complete result with this approach, it is a first approximation and the best we can do with the
data that is publicly available.

The resulting data in visualizedkigurel4in form of a histogram. We analyzed all available
26 board configuration files of Android 6 and obtained 158 unique constants -dxis ghows

the amount of configuration constants and theaxis depicts the frequency of the amduof
different values used.

This result clearly shows that only a small fraction of all configuration constants actually has
more than one possible value among all available configuration filconstants only have

a single value (71%) while only 2@nfiguration constants (13%) have 5 or more values and
can be regarded as real variability.

The natural questions that follows is: What do the configuration constants define that are
highly variable? To party answer this question we also incliigarel5 displaying the name

of each configuration constant. Obviously, extensive domain knowledge is required to fully
answer this questions but we camake some observations from the constant names.

Possible Configuration Options

120

100

#Configuration Constants
@ ®
S S

&
S

20

- . m R _ = D

10 9 8 7 6 5 4 3 2 1 4]

Frequency of #values

Figurel4: Possible configuration options for board configuration constants. The results were obtained by analyzing all
available 26 board configuration for Android 6 release 1.

23

#Values per Configuration Constant

#Values

& & S O oid 5 4% CE DL IOCIR T EHEEEHE R L AF LD DD O >
S ST @v;v@ e S e T ¢ el il e ¥ N P Fads e
T G PR F S T SR A @ Lo T T 0 @ O A or P e’ aF @ 7 (& o & P
LS NS & FL & @ %S Nake) & oS AL G/ E R F T EETR EF QP GO0 b
A T T AL VS LT 0 N0 T QA& R0 N (FLF & R E TGS O S TP EL
S LR QN L HE YOS orar® RSN S DR Be) O & A D77 & 70l &
T P F T LF TP GO GO wF NP S FK P s W g A7 O E 5 R G/ SR 07 P <7
FE T O R TAF 3P0 WA S 8 o7 0 oF BV A&7 QT QT o (22 07670 Q0 s L S Vo Qe O S
o Tl A 97 Bt O $ G TP P & DD s & QR E QU W PO (F AR ErS T Y, W s
@v@ vg@&;&@v@? «}%?V(q\‘“b@é@‘&\ﬁ@« ‘&(9 < So Q;\L&\/ & '\,\&@v-(”\&vb & RN < \&"XOXO" oio{b,\?iq‘i‘\ \Z ?@%@,Q}c&t\ R
\&\ %0 & & 0,&>\ <3 O/\ QN <€ QV‘@(’/\V PQK O\\ q‘}\ FF o7 RS &y -\ & ‘3- P07
A“)&& \)‘5\0 «V%O?Q.@v'\sg‘l’o t?g\ AR * < o‘gc & & OTSL \‘Aéﬁ&??‘ & ‘t\(} N «ﬂ\oiohvg
2 & TFEL 07 LE 9 ® & ¥ X >
) o2 SHGHESES &8 & ® ®
S & O AT O & L7 N
§ & < & s
< &£ Y

Configuration Constant

Figurel5: The amount bdistinct values obtained for the configuration constants in Android 6 board configuratio files.
figure only shows those configuration constants that have at least two different values among all configuration files.

From the names of configuration wstants in Figure 15 we can draw the following
conclusions:

Fist, several of those constants that are highly variable depict partition sizes or block sizes with
numbers (*_PARTITION_SIZE, * BLOCK_SIZE). Senmndf these configuration constants

are used formplementing module replacemeiaind therefore specify include directoriesg@e
BOARD_SEPOLICY_DIRS or * BDROID_BUILDCFG_INGLUiME, Bi&y constants refer

to the CPU or architecture of the targe¢vdce (TARGET_ARCH_VARIANT, TARGET_CPU_ABI,
TARGET_ARCH, TARGED ARCH_VARIANT). Thus, this seems to be one of the major
source ofvariability among the different board configurations.

Looking at the naming pattern of constants, it seems like at onet@onaming pattern was
chosen (e.g. prefix TARGET _* for specifying properties of the target device or BOARD_* for
encoding that this constant is defined in the board configuration). But through the evolution
of the system the configuration files got clated with new constants that did not follow this

rule (e.g. OVERRIDE_RS_DRIVER or MAX_EGL_CACHE_SIZE) which antakestedy
analysis were difficult.

4.1.2.2 Configuration Impact

The logical next question to ask is:
1. Which of these configuration constants hag highest impact?
2. Where do these configuration constants have an impact? l.e. is variability resolved in
global Makefiles or locally in individual modules?

To answer these questions, we searched all of Androids Makefiles for the names of the board
configuration constants. Obviously, a true analysis of Makefiles (including scanning and
parsing) is not feasible within this project. Therefore, we rely on a purely textual search here
making use ofegular expressions based search programsgiie®.

In this analysiswe differentiate between three locations within Android. First, ttievice

folder which contains (besides the configuration) vendpecific modules and apps. Second,
the buildfolder which contains global build files that direct the ovelalld process and define
reusable constants and functions. Any other Makefile must belong to ordinary Android
modules which form our third category. By making this distinction, we can infer whether
constants have a global impact (if they are referencedtiyan global build files) or whether

24

the impact is distributed among multiple modules (if they are mostly referenced in local
module-specific build files).

The result of our analysis is depictedFigurel6in a stacked area plot. The total amount of
area colored for a specific constant is the total amount of references of this constant. This
number is then broken down into the individual categories DEVICE, BUILDGDULE by
using different colors.

Figurel6: Textual References of board configuration constants in Androids build files. The figure distingvg@es build
files in the devicéolder (DEVIQRvhich belong to vendespecificmodules build files in the buildolder (BUILD) and files in
individualAndroidmodules (MODULDEOnNIly the 30 most references constants are shown.

The target architecture (TARGET_ARCH) is the most referenced board configuration constant
with almost 400 eferences. It is being referenced in devsmecific Makefiles, global
Makefiles but mostly in the Makefiles of individual Modules. Followed by the target board
platform (TARGET_BOARD_PLATFORM) which is reteedarg 200 times. Interestingly,

this consant is only referenced in deviegpecific modules (DEVICE) and local Android
modules (MODUE) and not in global Makefiles. With about 100 references, the third most
referenced constanis the second target architectur€TARGET_2ND_ARG@Hjch has been
introduced for 64bit Android builds and is referenced mostly in global Makefiles.

From this analysjsve can draw the following conclusions:

1. Only a small set of constants have a large amount of references throughout the
Android build system while the greanajority only have very few references. The
amount of references follows a power law distribution, a phenomenon that also
describes the number of links on the internet, file sizes, etc.

2. The target architecture and board platform are by far the constavith the highest
impact, mostly on individual modules.

3. The majority of references are in dewispecific or regular Android modules (~70% of
all references). Therefore, the architecture and board platform variability in Android
has be to resolved in inddial modules.

25

