
@ Pablo Oliveira Antonino

SSA 01 – Hello Architecture

TU Kaiserslautern, SS2018
Lecture “Software and System Architecture (SSA)”
TU Kaiserslautern, SS2018
Lecture “Software and System Architecture (SSA)”

Dr. Pablo Oliveira Antonino
pablo.antonino@iese.fraunhofer.de
Dr. Pablo Oliveira Antonino
pablo.antonino@iese.fraunhofer.de

@ Pablo Oliveira Antonino

Hello Architecture

@ Pablo Oliveira Antonino
© Fraunhofer IESE

3

Exercise

Discussion

 What is software architecture?

 State an “intuitive” definition of the term

 Why having a software architecture?

 Your experiences?

 Your challenges?

 Your solutions?

 What does an architect do?

 Why is architecting needed / useful?

 Role in software engineering?

 Skills and expertise architects need?

@ Pablo Oliveira Antonino
© Fraunhofer IESE

4

Foundations

What is Architecture?[1]

 Modules, connections, dependencies and interfaces

 „The big picture“

 An abstraction

 Things that are expensive to change

 A conceptual model

 Satisfying non-functional reqs /quality attributes

 A plan

 A blueprint

 Systems, subsystems, interactions, and interfaces

 Governance

 The outcome of strategic decisions

 Necessary constraints

 Tools and methods

 Technical leadership

 Strategy and vision

…

[1] S. Brown „Software architecture for developers“

@ Pablo Oliveira Antonino
© Fraunhofer IESE

5

Foundations

Software Architecture Definitions

 Software architecture is the structure or structures of the system, which
comprise software elements, the externally visible properties of those
elements, and the relationships among them.

[Software Architecture in Practice, L.Bass, P.Clements, R.Kazman]

 Software architecture is the fundamental concepts or properties of a
system in its environment embodied in its elements, relationships, and
in the principles of its design and evolution.

[Systems and software engineering — Architecture description, ISO Standard 42010]

 Software architecture is the set of design decisions which, if made
incorrectly, may cause your project to be cancelled.

[E. Woods]

 Software architecture is the set of principal design decisions made about
the system.

[Software Architecture: Foundations, Theory, and Practice , E.Dashofy, N.Medvidovic, R. Taylor.]

@ Pablo Oliveira Antonino
© Fraunhofer IESE

6

Foundations

Management Objectives

 Construction, delivery and maintenance of innovative software
systems with predictable and adequate quality delivered in time and
budget

scalability
long-living

minimal cost

high quality

guaranteed service levels
optimized

legacy integration

time-to-market

@ Pablo Oliveira Antonino
© Fraunhofer IESE

7

Foundations

Foundations of Architecture

System
(Code + Infrastructure)

Implemented
Architecture

Intended
Architecture

Architect /
Developers

Prescribes + Describes

Predicts Properties

„Every system has an architecture!“

„You can‘t avoid getting an architecture …!“

„You can only avoid getting a wrong one …!“

„If it is not clear who makes the decisions, someone will make them!“

„Although the system has an architecture, it might not be known!“

Designs + Evolves
Controls

„Architecture is not a phase!“

@ Pablo Oliveira Antonino
© Fraunhofer IESE

8

Foundations

Challenges in Software Engineering

Challenges and complexity arise from …

 the products to be built

 the increasing interconnection of systems

 the integration with already existing systems

 the continuous change of systems

 the collaboration of development organizations

@ Pablo Oliveira Antonino
© Fraunhofer IESE

9

Foundations

Engineering Challenge: Large-Scale Systems

Lines of Code [kLOC]

t
1970 1980 1990 2000 2010

1

10

100

1000

 Examples

 Car window opener

 Car control unit

 Windows XP

10.000 LoC

15.000.000 LoC

40.000.000 LoC

@ Pablo Oliveira Antonino
© Fraunhofer IESE

10

Foundations

Engineering Challenge: Large Development Teams

Increasing system size cannot be compensated with more efficient methods

 Large teams have to collaborate

 Teams

 Distributed over buildings, countries, continents

 Distributed over departments, organizations

 Decomposition of work for parallelization is essential

@ Pablo Oliveira Antonino
© Fraunhofer IESE

11

Foundations

Engineering Challenge: High Quality

Quality is not only about correctness of functionality

Successful software systems have to assure additional properties

 Performance

 Security

 Availability

 Maintainability

 …

These properties are the so-called Quality Attributes

@ Pablo Oliveira Antonino
© Fraunhofer IESE

12

Foundations

The Mission of Architecture

Conceptual tool to cope with complexity
in Software Engineering needed

@ Pablo Oliveira Antonino
© Fraunhofer IESE

13

Foundations

Why Architecture? It is all about Bridging the Gaps!

Problem Space Solution Space

Concerns Drivers Solution
Concepts

Realization

Idea /
Vision

Code
Release

ArchitectureRequirements Arch. Drivers

Information Flow in Software Engineering

Architecting
tn

Evolution

• Clear Technical Debt of the Past
• Prepare/Solve Present Challenges
• Anticipate Future Changes/Needs

tn-m tn tn+p

Change happens,
Systems follow!

Concerns
vs.

Results

Problem Space
vs.

Solution Space

Present
vs.

Past & Future

@ Pablo Oliveira Antonino
© Fraunhofer IESE

14

Foundations

Architecting vs. Architecture

Source:
http://www.karl-gotsch.de
http://blogs.artinfo.com/objectlessons/files/2012/09/0723-architect_sm.jpeg

Activities

Design
Modeling

Communication
Negotiation

Artefacts

Design Decisions
Blueprints & Models

Documentation
Implemented Decisions

@ Pablo Oliveira Antonino
© Fraunhofer IESE

15

Foundations

Architectures: The Artifact

 … provide guidance

 Plan for constructing a system

 Technical leadership and
coordination

 Standards and consistency

 … balance technical risks

 Identification and mitigation

 Definition of solution concepts

 Anticipation (preparation) for
changes

 … enable communication

 Clear technical vision and roadmap

 Explicit documentation for
communication

 … manage the inherent
complexity of software

 Products to be built

 Increasing interconnection of
systems

 Integration with legacy systems

 Collaboration of organizational
units

@ Pablo Oliveira Antonino
© Fraunhofer IESE

16

Foundations

System-of-Systems A.

System A.

Architecture: It is all about the Scope!

Software A.

Ultra-Large-Scale-
System A. Ecosystem A.

Platform A.

Reference A.

Enterprise A.

@ Pablo Oliveira Antonino
© Fraunhofer IESE

17

Foundations

Architecting: The Activity

Lead & Engage
Orchestrate & Govern

Communicate & Negotiate

0110
01

Design
Model & Document

Forecast & Scout
Anticipate & Prepare

Develop & Prototype
Analyze & Reconstruct

@ Pablo Oliveira Antonino
© Fraunhofer IESE

18

Foundations

Architecting: It is all about Speaking the same Language!

Technology (-specific) Level

Business Level

Architecture

Software
Architect

Developers

Business
Managers

Lan
g

u
ag

e

V
alu

e

R
isks

Lan
g

u
ag

e

C
red

ib
ility

@ Pablo Oliveira Antonino
© Fraunhofer IESE

19

Foundations

AssetsInitiatives

Lifecycle

Present

Future
(Anticipation)

Past
(Debt)

Resources Budget

Schedule Value

Quantity Quality

Scope of
Architecting

The Bermuda Triangle
of Architecting

Don’t get lost &
Don’t lose your
investments!

Balance the
architecture
equilibrium!

Note: a change in any triangle
dimension affects the others!

@ Pablo Oliveira Antonino
© Fraunhofer IESE

20

Example

Real Life: “Source Code is the Only Truth”

Source Code

@ Pablo Oliveira Antonino
© Fraunhofer IESE

21

Example

Real Life: “I Can Always Explain How the System…”

[Source: dreamstime.com]

@ Pablo Oliveira Antonino
© Fraunhofer IESE

22

Example

Real Life: White Board and PowerPoint Sketches

@ Pablo Oliveira Antonino
© Fraunhofer IESE

23

Example

Real Life: Architecture Documents

Too Long;
Did not Read

@ Pablo Oliveira Antonino
© Fraunhofer IESE

24

Foundations

An Ideal Architecture Documentation...

... describes what the code itself does not!

e.g.

 What are the design decisions?

 What is the rationale for the decisions?

 What are the discarded alternatives? Why?

 …

@ Pablo Oliveira Antonino
© Fraunhofer IESE

25

Foundations

What do We Need in Terms of Architecture?

Implicit

Explicit

Problem Space Solution Space

Explicit architecture needed to
benefit from architecture!

@ Pablo Oliveira Antonino
© Fraunhofer IESE

26

Foundations

Explicit vs. Implicit Architecture
Problem Space

Implicit

Explicit

Intended
by Stakeholder

Understood
by Architect

elicit/
specify /
document document

guess

consolidate

Problem Space

Concerns Drivers

@ Pablo Oliveira Antonino
© Fraunhofer IESE

27

Foundations

Explicit vs. Implicit Architecture
Solution Space

Implicit

Explicit

Designed
by Architect

Implemented
by Developer

model /
document reconstruct

„hack“

implement

Solution Space

Decisions Manifestation

@ Pablo Oliveira Antonino
© Fraunhofer IESE

28

Foundations

Explicit vs. Implicit Architecture
Problem Space vs. Solution Space

Implicit

Explicit

Intended
by Stakeholder

Understood
by Architect

elicit/
specify /
document document

guess

consolidate

Designed
by Architect

Implemented
by Developer

model /
document reconstruct

„hack“

implement

Problem Space Solution Space

decide

decide

decide

decide

Concerns Drivers Decisions Manifestation

@ Pablo Oliveira Antonino
© Fraunhofer IESE

29

Foundations

Evolution and Drift

Implicit

Explicit

Intended
by Stakeholder

Understood
by Architect

elicit/
specify /
document document

guess

consolidate

Designed
by Architect

Implemented
by Developer

model /
document reconstruct

„hack“

implement

driftdrift

Problem Space Solution Space

decide

decide

decide

decide

Concerns Drivers Decisions Manifestation

driftdrift

@ Pablo Oliveira Antonino

The Architecture of “Hello World”

public class HelloWorld {

public static void main (String[] args) {
System.out.println("Hello World");

}
}

@ Pablo Oliveira Antonino
© Fraunhofer IESE

31

Exercise

Discussion

 Does Hello World have an architecture?

 Yes

 What does it look like?

 No

 Why not?

@ Pablo Oliveira Antonino

The Architecture of “Hello World”

#include <iostream>
using namespace std;

int main()
{

cout << "Hello World";
return 0;

}

public class HelloWorld {

public static void main (String[] args){
System.out.println("Hello World");
}

}

@ Pablo Oliveira Antonino
© Fraunhofer IESE

33

Foundations

Architecture Design Decisions

 Design Decisions Balance competing concerns

 Some Design Decisions are made early in the lifecycle

 Typically have far-reaching effects

 Are hard to change (in later phases or future projects)

 The impact of architecture design decisions has to be known!

@ Pablo Oliveira Antonino
© Fraunhofer IESE

34

Example

Examples of Design Decisions

 Programming language Java

 One central database

 No central instance of data, everything is distributed

 Three Tier Architecture

 Usage of an app generation framework for serving iOS and Android
devices

 XML as data format

 Compression of data between client and server due to low network
bandwidth

 Outsourcing of implementation of a component

 …

@ Pablo Oliveira Antonino

Wrap Up

@ Pablo Oliveira Antonino
© Fraunhofer IESE

36

Foundations

Common Misconceptions

 Software Architecture may or may not exist in my system

 Software Architecture is a phase

 I can change the Software Architecture of my system later, whenever
needed

 Documenting Software Architecture is simply an overhead; I can always
remember and explain my system

 Software Architecture will be the same in the following projects

 Software Architecture has nothing to do with my coding
Further reading: Top 10 software architecture mistakes
http://www.infoq.com/news/2007/10/top-ten-architecture-mistakes

@ Pablo Oliveira Antonino

Problem Space Solution Space

Concerns Drivers Solution
Concepts

Realization

Idea /
Vision

Code
Release

Architecture

Architecting in a Nutshell

Requirements Arch. Drivers

Information Flow in Software Engineering

Architecting
tn

Evolution

• Clear Technical Debt of the Past
• Prepare/Solve Present Challenges
• Anticipate Future Changes/Needs

tn-m tn tn+p

Change happens,
Systems follow!

Architect’s Activities

Value Proposition
of Architecting
Balance the architecture
equilibrium!

Lead & Engage
Orchestrate & Govern

Communicate & Negotiate

0110
01

Design
Model & Document

Forecast & Scout
Anticipate & Prepare

Develop & Prototype
Analyze & Reconstruct

@ Pablo Oliveira Antonino
© Fraunhofer IESE

38

Foundations

AssetsInitiatives

Lifecycle

Present

Future
(Anticipation)

Past
(Debt)

Resources Budget

Schedule Value

Quantity Quality

Architecting

The Bermuda Triangle
of Architecting

Don’t get lost &
Don’t loose your
investments!

Balance the
architecture
equilibrium!

Note: a change in any triangle
dimension affects the others!

@ Pablo Oliveira Antonino
© Fraunhofer IESE

39

Foundations

Architectures…

 … provide guidance

 Plan for constructing a system

 Technical leadership and
coordination

 Standards and consistency

 … balance technical risks

 Identification and mitigation

 Anticipation (preparation) for
changes

 … enable communication

 Clear technical vision and roadmap

 Explicit documentation for
communication

 … manage the inherent
complexity of software

 Products to be built

 Increasing interconnection of
systems

 Integration with legacy systems

 Collaboration of organizational
units

@ Pablo Oliveira Antonino
© Fraunhofer IESE

40

Foundations

Evolution and Drift

Implicit

Explicit

Intended
by Stakeholder

Understood
by Architect

elicit/
specify /
document document

guess

consolidate

Designed
by Architect

Implemented
by Developer

model /
document reconstruct

„hack“

implement

driftdrift

Problem Space Solution Space

decide

decide

decide

decide

Concerns Drivers Decisions Realization

driftdrift

@ Pablo Oliveira Antonino
© Fraunhofer IESE

41

Foundations

Architecture Design Decisions

 Design Decisions Balance competing concerns

 Some Design Decisions are made early in the lifecycle

 Typically have far-reaching effects

 Are hard to change (in later phases or future projects)

 The impact of architecture design decisions has to be known!

@ Pablo Oliveira Antonino

