
SSA05 – Design Process

TU KaisersTU Kaisers

TU Kaiserslautern, SS2018
Lecture “Software and System Architecture (SSA)”

Dr. Pablo Oliveira Antonino
pablo.antonino@iese.fraunhofer.de

© Fraunhofer IESE

2

Organization

Lecture
 2018-06-18: Architecture Evaluation will be given by Domink Rost

from Fraunhofer IESE.

Exercises
 Original plan -> 2018-06-06: Modeling with tools

 (NEW DATE 13.06.2018).

 Original planned -> 2018-06-13: Evaluation of Architecture documentation

 (NEW DATE 20.06.2018)

© Fraunhofer IESE

3

Exercise

Discussion

 RECAP LAST LECTURE

 Explain the contents of the last lecture

 What were the topics?

 Why do we need it?

 How does it work?

 How is it created, used, and/or evolved?

© Fraunhofer IESE

4

Foundations

Design

 It is relatively easy to design for the perfect cases, when everything
goes right, or when all the information required is available in
proper format.
[Donald Norman]

 The most difficult part of building software is not coding;
it is the decisions you make early at the design level.
Those design decisions live with the system for the rest of its lifetime.
[Pattern-Oriented Analysis and Design - Composing Patterns to Design Software Systems]

© Fraunhofer IESE

5

Foundations

The Goals of Design

 Balancing the Bermuda triangle of architecting
(lifecycle, initiatives, assets)

 Creation of a plan or convention for the construction
of a software system
 Decomposition of the problem into smaller pieces

 Control of the complexity

 Coming to a solution and communicating it

 Prediction of effort, quality, impacts, etc.

 Risk Mitigation of the impact of change on a software system
 Change is the inevitable characteristic of any successful software system

 Prepare anticipated changes (before the change is required)

 Address unforeseeable changes (when it occurs)

© Fraunhofer IESE

6

Foundations

Architecture vs. Design

 “Architecture is design, but not all design is architecture“
(G. Booch)

 It depends on the criticality of the decision: is it architecturally-significant?

 Principle of locality

 Depends on scope and is relative

 We call things architecturally-significant if they are…

 Costly to change

 Risky

 New

© Fraunhofer IESE

7

Foundations

Challenges of Architecture Design

 Understand the domain and its specifics

 Work on incomplete and changing requirements

 Find adequate solutions

 Achieve adequate confidence that solutions work

 Design a solution involving many experts for specific topics

 Refine and adjust architecture while implementation is already ongoing

 Judge technologies for their adequacy

 Select and use technologies appropriately

 Become aware of drift

© Fraunhofer IESE

8

Foundations

Generic Decomposition Steps

 Identify elements
 Identify responsibilities
 Identify unique, self-contained roles/elements
 Identify types of composed/aggregated elements

 Identify relationships
 Identify data/information exchange requirements
 Identify interfaces
 Identify dependency types
 The dependency graph of elements must have no cycles

 Increase semantic cohesion between elements and
reduce coupling of elements
 Elements that change together are grouped together
 Elements that are used together are grouped together
 Elements that are owned by the same group are grouped together

© Fraunhofer IESE

9

Foundations

Design: Essential Principles

Abstraction
 Extraction of the essentials

Separation of Concerns
 Hierarchical Decomposition
 Divide & Conquer (Top-down)
 Divide & Conquer (multi-dimensional)
 Modularization
 Localization of concerns

Encapsulation
 Information hiding
 Coupling & Cohesion
 Redundancy Free

Uniformity
 Common Design Principles

© Fraunhofer IESE

10

Foundations

Conceptual “Tools“ for Architecture Design

 Creativity

 Classification

 Element types, relation types

 Abstraction

 Simplifications, aggregations, processes, end-to-end usages

 Categorization

 Group distinct facets of a solution concepts

 E.g., functionality, data, data flow, information flows, control flows,
deployment, interfaces, physical constraints, technologies

 Experience

 … since there is no “detailed guide to creativity“

Decompose
Functional / Data / Deployment @ RT

Architecture Design Process

Delineate System / Context

Achieve
Quality Attributes @RT

Decompose
Functions / Data / Deployment @DT

Achieve
Quality Attributes @DT

In
cr

ea
se

 C
o

n
fi

d
en

ce

C
o

n
so

lid
at

e

Map RT to DT

Input / Drivers Output

All requirements, Context:
Iteration broad

Function + Data requirements:
Iterations starting broad and

incrementally refining

RT QA Drivers:
Iterations with small number of

drivers each

Function + Data requirements:
Iterations starting broad and

incrementally refining

DT QA Drivers:
Iterations with small number of

drivers each

System / Context Views:
solution concepts,

perspectives, decisions

RT Views:
solution concepts,

perspectives, decisions

RT views:
solution concepts,

perspectives, decisions

DT views:
solution concepts,

perspectives, decisions

DT views:
solution concepts,

perspectives, decisions

generic
for all cases

specific
for each case

Design

Decompose

4 Reason
(among Alternatives)

5 Make Decisions
(based on Rationales, Risks,
Assumptions, Scaling Factors)

3 Explore Design Space
(with Decomposition Strategy)

6 Manifest
(populate Models and Diagrams)

Requirements
(Business Goals,
Functional and
Non-Functional,

Constraints)

Modeling
Language
(Notation)

Architecture
Drivers

(Key Functional
Requirements,

Quality
Attributes)

Skills and
Experience
(Competence

and Expertise of
Individuals)

Best Practices
(Method,

Guidance, Rules
and Standards)

Packaged
Experience

(Styles, Tactics,
(Anti)-Patterns,

Smells)

Domain
Concepts
(Reference

Architectures,
Reusable Assets)

Existing
Solutions

(Version,
Variants,
History)

1 Select Architecture Driver
by Significance (Priority or Criticality)

2 Select Views
(Views and Diagram to be populated)

7 Consolidate and Align
(across views, along perspectives, with previous
decisions made)

8 Increase Confidence
(if critical, if necessary)

Architecture Design Iteration

© Fraunhofer IESE

13

Hierarchical Decomposition and Modularization
(Divide & Conquer)

Functionality-driven

Adoption and Preparation for Use/Reuse
(Abstract & Retrofit)

Data-driven

Deployment-driven

Transformation
(Restructure / Use Patterns)

Architecture Decomposition Strategies

Quality-driven

Technology-driven

© Fraunhofer IESE

14

© Fraunhofer IESE

14

Context View

Main Purposes

 Definition of System Boundary

 Identification of Context:

 Humans interacting with System

 Context Systems

 Information flow

 System seen as a black box!

Aspects to think about

 What does the system do?

 What is the interaction with the environment?

 What data is exchanged?

Architecture Design

Context

1 - Delineate System and its context

© Fraunhofer IESE

15

© Fraunhofer IESE

15

Functional View

Main Purposes

 Identification and decomposition of systems functionality

 Linking (functional) requirements to later design steps

 Understanding of functional interrelationships

 Identify missing (functional) requirements

Architecture Design

Context

System Functions

1 - Delineate System and its context 2 - Functional decomposition and orchestration to grant
the services

© Fraunhofer IESE

16

Functional View

 Decomposition of functionalities.Architecture Design

Context

System Functions

ibd [System] Vehicle [Vehicle:Functional View]

Warnings and Notifications

vironment Obstacles

:Sense v ehicle
speed

:Detect obstacles

:Adaptiv e cruise control

:Limit speed

:Engine control :Braking
assistance

:Nav igation Functions

GPS Signal

Vehicle speed

Vehicle speed

route plan

Traffic Information Signal

obstacle distance

speed limit

throttle engine brake command emergency brake

1 - Delineate System and its context 2 - Functional decomposition and orchestration to grant
the services

© Fraunhofer IESE

17

© Fraunhofer IESE

17

Foundations

Functional View

Architecture Design

Context

System Functions

ibd [System] Vehicle [Vehicle: Nav igation functions]

Warnings and Notifications

:Sense v ehicle
speed

:Determine ground
position

:Acquire traffice
information

:Create route plan

Traffic Information

ground position

Vehicle speed

Traffic Information Signal
GPS Signal

route plan

 Decomposition of functionalities.

1 - Delineate System and its context 2 - Functional decomposition and orchestration to grant
the services

© Fraunhofer IESE

18

© Fraunhofer IESE

18

Foundations

Functional View

Architecture Design

Context

System Functions

ibd [Class] Determine ground position [Determine ground position]

:Determine position
based on GPS

:Correct GPS based position by
prev ious position and v ehicle

speed

/previous ground position

GPS Signal

GPS based position
ground position

Vehicle speed ground position

 Decomposition of functionalities.

1 - Delineate System and its context 2 - Functional decomposition and orchestration to grant
the services

© Fraunhofer IESE

19

© Fraunhofer IESE

19

Foundations

Functional View

Architecture Design

Context

System Functions

 Linking to functional requirements

UC1: Nav igate to
restaurant

Determine Ground
Position

«System Func...
Find restaurant

«Function Gro...
Determine ground

position

«Function Gro...
Create route plan

1 - Delineate System and its context 2 - Functional decomposition and orchestration to grant
the services

© Fraunhofer IESE

20

© Fraunhofer IESE

20

Foundations

Functional View

Architecture Design

Context

System Functions

 Consolidate Requirements & Functional View

1 - Delineate System and its context 2 - Functional decomposition and orchestration to grant
the services

© Fraunhofer IESE

21

© Fraunhofer IESE

21

Functional View

Main Purposes

 Identification and decomposition of systems functionality

 Linking (functional) requirements to later design steps

 Understanding of functional interrelationships

 Identify missing (functional) requirements

Aspects to think about

 Which functions are responsible for Data

 Creation

 Transportation

 Processing and Storage

 Which functions communicate?

 What data is exchanged?

Architecture Design

Context

System Functions

1 - Delineate System and its context 2 - Functional decomposition and orchestration to grant
the services

© Fraunhofer IESE

22

© Fraunhofer IESE

22

Foundations

Logical View

Main Purposes

 Describe the internal logical structure of the SUD

 Partition the system into communicating logical components

 Allocate desired functions to cohesive logical units

 Support the reuse of already existent logical components

 Define the total behavior of the system

Architecture Design

Context

System Functions

Logical Components

1 - Delineate System and its
context

2 - Functional decomposition
and orchestration to grant the

services

3 – Reason on the realization
(technology-independent)

© Fraunhofer IESE

23

© Fraunhofer IESE

23

Example

Logi
cal

View

«Logical Component»
Car Infotainment System

«System Function»
Correct GPS based position by
prev ious position and v ehicle

speed

«Input Function»
Acquire traffice

information

«Function Group»
Create route plan

«System Function»
Find restaurant

«System Func...
Store traffic
information

«Logical Component»
Car Infotainment System

«Logical Component»
Traffic Information Management System

«Logical Component»
Map & Route Component

«Logical Compon...
Display

«Logical Component»
Radio

«Input Function»
Acquire traffice

information

«Logical Component»
Ground Position Determiner

«Function Group»
Create route plan

«System Function»
Find restaurant «System Func...

Store traffic
information

«System Function»
Correct GPS based position by
prev ious position and v ehicle

speed

Logical View

 Mapping of functions to logical components

1 - Delineate System and its
context

2 - Functional decomposition
and orchestration to grant the

services

3 – Reason on the realization
(technology-independent)

© Fraunhofer IESE

24

© Fraunhofer IESE

24

Foundations

Logical View

 Mapping of functions to logical components: Aspects to consider

 Increase cohesion: Semantically similar functions go together

 Development Expertise can be concentrated in one component

 Similar functions often have the same ASIL-level. Less components can be
developed using more rigor. See e.g. Microkernel approach

 Decrease Coupling: Functions with many interactions go together

 Reduce communication overhead

 Reduce testing effort

 Reduce integration effort

Architecture Design

Context

System Functions

Logical Components

1 - Delineate System and its
context

2 - Functional decomposition
and orchestration to grant the

services

3 – Reason on the realization
(technology-independent)

© Fraunhofer IESE

25

© Fraunhofer IESE

25

Foundations

Logical View

Architecture Design

Context

System Functions

Logical Components

 Identification of Interfaces between logical components

«Logical Component»
Car Infotainment System

«Logical Compon...
GPS Sensor

«Logical Compon...
Speed Sensor

«Logical Component»
Traffic Information

Observ er

«Logical Compon...
Ground Position

Determiner

«Logical Compon...
Map & Route
Component

«Logical Compon...
Display

«Logical Component»
Radio

1 - Delineate System and its
context

2 - Functional decomposition
and orchestration to grant the

services

3 – Reason on the realization
(technology-independent)

© Fraunhofer IESE

26

© Fraunhofer IESE

26

Foundations

Logical View

Aspects to think about

 How should functionality be allocated to executable components?

 How can components be refined into sub-components?

 Are there commonalities between components?

 So that redundant code can be prevented

 What data is exchanged between the components

 What are the interfaces to be used?

 What Behavior does a component have (statemachine, activity, …)?

Architecture Design

Context

System Functions

Logical Components

1 - Delineate System and its
context

2 - Functional decomposition
and orchestration to grant the

services

3 – Reason on the realization
(technology-independent)

© Fraunhofer IESE

27

© Fraunhofer IESE

27

Foundations

Software View

Architecture Design

Context

System Functions

Software Entities

 Main Purposes

 Decomposition of software components into sub-components and
classes

 Definition of Software Interfaces

 Identification of necessary software datatypes

Aspects to think about

 How are logical components realized by software components?

 How should components be implemented by implementation units

 What are the interfaces to be used

 Which component provides/requires an interface

 What datatypes should be used for data-exchange?

Logical Components

1 - Delineate
System and its

context

2 - Functional
decomposition and

orchestration to grant
the services

3 – Reason on the
realization

(technology-
independent)

4 - Software
Realization of

Functions

© Fraunhofer IESE

28

© Fraunhofer IESE

28

Foundations

Software View

Architecture Design

Context

System Functions

Software Entities

 How are logical components realized by software components?

Logical Components

«Logical Component»
Traffic Information

Management System

Traffic Information

«Logical Component»
Map & Route Component

Traffic Information

«Software Component»
Traffic Information SW

Component

«Software Component»
Map&Route SW Component

Event Subscriber

«C++ Class»
Traffic Information

Subscriber

EventInterface

realizes

realizes

1 - Delineate
System and its

context

2 - Functional
decomposition and

orchestration to grant
the services

3 – Reason on the
realization

(technology-
independent)

4 - Software
Realization of

Functions

© Fraunhofer IESE

29

© Fraunhofer IESE

29

Foundations

Software View

Architecture Design

Context

System Functions

Software Entities

 Which component provides/requires an interface

Logical Components provided interfaces

Required interfaces

«Software Component»
Traffic Information SW

Component

«Software Component»
Map&Route SW Component

EventInterface

1 - Delineate
System and its

context

2 - Functional
decomposition and

orchestration to grant
the services

3 – Reason on the
realization

(technology-
independent)

4 - Software
Realization of

Functions

© Fraunhofer IESE

30

© Fraunhofer IESE

30

Foundations

Software View

Architecture Design

Context

System Functions

Software Entities

 How are interfaces implemented?

Logical Components

«Software Component»
Traffic Information SW

Component

EventPublisher

«C++ Class»
Traffic Information

Publisher

«C++ Class»
Ev ent Publisher

«Software Component»
Map&Route SW Component

Event Subscriber

«C++ Class»
Traffic Information

Subscriber

«C++ Class»
Ev ent Subscriber

«interface»
Ev entInterfaceEventInterface

1 - Delineate
System and its

context

2 - Functional
decomposition and

orchestration to grant
the services

3 – Reason on the
realization

(technology-
independent)

4 - Software
Realization of

Functions

© Fraunhofer IESE

31

Software View

«C++ Class»
Ev entPublisher

- pin: int
- observer[]: Event Subscriber

+ EventPublisher(int): int
+ Attach(Event Subscriber)
+ Detach(Event Subscriber)
+ Notify()
+ Run()

«enumeration»
Ev entType

 TrafficInformation
 MediaError
 ...

«C++ Class»
Ev ent Subscriber

+ Notify()

«interface»
Ev entInterface

+ Attach(Event Subscriber, EventType)
+ Detach(Event Subscriber)

«C++ Class»
Ev entManager

- EventTypesCollection: EventType [0..numPins]
- EventHandlerCollection: EventPublisher [0..numPins]

+ Attach(Event Subscriber, EventType)
+ Connect(int, EventType, EventPublisher): int
+ Detach(Event Subscriber)

Event Publisher

«C++ Class»
Traffic Information

Publisher

+ EventPublisher(int): int
+ Attach(Event Subscriber)
+ Detach(Event Subscriber)
+ Notify()
+ Run()

Event Subscriber

«C++ Class»
Traffic Information

Subscriber

+ Notify()

«use»

numPins

1

Architecture Design

Context

System Functions

Software Entities

Logical Components

 Architecture relevant classes, interfaces, datatypes

1 - Delineate
System and its

context

2 - Functional
decomposition and

orchestration to grant
the services

3 – Reason on the
realization

(technology-
independent)

4 - Software
Realization of

Functions

© Fraunhofer IESE

32

© Fraunhofer IESE

32

Foundations

Hardware View

Main Purposes

 Identification of Sensors, actuators, ECUs

 Identification of Communication buses

 Deployment of software components

 Functional realization by hardware
entities

Architecture Design

Context

System Functions

Software Entities

Logical Components

Hardware & Networks

«Device»
Infotainment
System Unit
Processor

«Sensor»
CAN Speed Sensor

«Sensor»
CAN GPS Sensor

«Actuator»
Brake

controller

«Actuator»
Steering
Controler

CAN

High Speed
CAN

CAN

«Logical Com...
Speed Sensor

«Logical Com...
GPS Sensor

«Software Component»
Traffic Information SW

Component

«Software Component»
Map&Route SW Component

«ECU»
Engince Control

Unit
FlexRay

«realize»

«deploy»

«deploy»

«realize»

«Device»
Infotainment
System Unit
Processor

«Sensor»
CAN Speed Sensor

«Sensor»
CAN GPS Sensor

«Actuator»
Brake

controller

«Actuator»
Steering
Controler

CAN

High Speed
CAN

CAN

«ECU»
Engince Control

Unit
FlexRay

1 - Delineate
System and its

context

2 - Functional
decomposition

and orchestration
to grant the

services

3 – Reason on the
realization

(technology-
independent)

4 - Software
Realization
of Functions

5 - Hardware
realization of
functions and

Deployment of
SW Entities

© Fraunhofer IESE

33

© Fraunhofer IESE

33

Foundations

Hardware View

Aspects to think about

 How should software components be deployed to computing nodes?

 What bus systems are used to exchange data?

 Which logical components should be implemented in hardware?

 Which hardware manufacturer/type should be chosen?

Architecture Design

Context

System Functions

Software Entities

Logical Components

Hardware & Networks

«Device»
Infotainment
System Unit
Processor

«Sensor»
CAN Speed Sensor

«Sensor»
CAN GPS Sensor

«Actuator»
Brake

controller

«Actuator»
Steering
Controler

CAN

High Speed
CAN

CAN

«Logical Com...
Speed Sensor

«Logical Com...
GPS Sensor

«Software Component»
Traffic Information SW

Component

«Software Component»
Map&Route SW Component

«ECU»
Engince Control

Unit
FlexRay

«realize»

«deploy»

«deploy»

«realize»

«Device»
Infotainment
System Unit
Processor

«Sensor»
CAN Speed Sensor

«Sensor»
CAN GPS Sensor

«Actuator»
Brake

controller

«Actuator»
Steering
Controler

CAN

High Speed
CAN

CAN

«ECU»
Engince Control

Unit
FlexRay

1 - Delineate
System and its

context

2 - Functional
decomposition

and orchestration
to grant the

services

3 – Reason on the
realization

(technology-
independent)

4 - Software
Realization
of Functions

5 - Hardware
realization of
functions and

Deployment of
SW Entities

© Fraunhofer IESE

34

© Fraunhofer IESE

34

Foundations

Logical vs. HW/SW View

Architecture Design

Context

System Functions

Logical Components

 Logical View should be Technology-independent

 Defer design decision as late as possible

«Logical Compon...
GPS Sensor «Device»

Onboard Unit
Processor

«Sensor»
CAN GPS Sensor

CAN

Alt.1

Alt.2«Device»
Onboard Unit Processor

PIN

«Logical Compon...
GPS Sensor «HW-SW Interface»

GPS Sensor Bridge

«Sensor»
PIN-GPS Sensor

PINrealizes

realizes

Software Entities

Hardware & Networks

1 - Delineate
System and its

context

2 - Functional
decomposition

and orchestration
to grant the

services

3 – Reason on the
realization

(technology-
independent)

4 - Software
Realization
of Functions

5 - Hardware
realization of
functions and

Deployment of
SW Entities

© Fraunhofer IESE

35

© Fraunhofer IESE

35

Foundations

When to Stop Working at the Architecture Level?

 You should stop when…

… you addressed the key requirements and quality attributes

 … you can explain how they are addressed

… and have enough confidence that they can be achieved

… and you can assign work units to developers

… and you can control the parallel development and integration

 You might temporarily leave the architecture level…

 … to collect information, get more confidence

… if you do not exactly know what you abstract from and have to try out

… in prototyping activities and technical evaluations

 You always have to come back to the architecture level…

… to integrate your lessons learned

… to judge the results in the context
 … to reason about change

© Fraunhofer IESE

36

© Fraunhofer IESE

36

Foundations

When to Stop Designing?

 You have covered the most important things when…

 … you addressed the key requirements and quality attributes

 … you can explain how they are addressed

 … and have enough confidence that they can be achieved

 … and you can assign work units to developers

 … and you can control their parallel development and integration

 You continue designing during development because ...

 … you refine architectural decisions

 … you design the methods, data structures

 … you implement solutions (source code and test cases)

 … you make the system work

 But you need to make sure not to break the architecture!

© Fraunhofer IESE

37

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

	Slide Number 1
	Organization
	Discussion
	Design
	The Goals of Design
	Architecture vs. Design
	Challenges of Architecture Design
	Generic Decomposition Steps
	Design: Essential Principles
	Conceptual “Tools“ for Architecture Design
	Architecture Design Process
	Slide Number 12
	Slide Number 13
	Context View
	Functional View
	Functional View
	Functional View
	Functional View
	Functional View
	Functional View
	Functional View
	Logical View
	Logical View
	Logical View
	Logical View
	Logical View
	Software View
	Software View
	Software View
	Software View
	Software View
	Hardware View
	Hardware View
	Logical vs. HW/SW View
	When to Stop Working at the Architecture Level?
	When to Stop Designing?
	Slide Number 37

