
SSA – Architecture and Agility

TU Kaiserslautern, SS2018
Lecture “Software and System Architecture (SSA)”

Dr. Pablo Oliveira Antonino
pablo.antonino@iese.fraunhofer.de

Architecture-Centric Engineering

© Fraunhofer IESE

3

Foundations

Architecture is a Central Artifact

Architecture

© Fraunhofer IESE

4

Foundations

But Architecture is NOT a Stand-Alone Artifact!

Software Architecture

Requirements

addresses

Implementation

prescribes, abstracts from

© Fraunhofer IESE

5

Foundations

Project Management

AArchitecture

© Fraunhofer IESE

6

Foundations

Organizational Management

AArchitecture

© Fraunhofer IESE

7

Foundations

Lifecycle Management

AArchitecture

Evolution Trigger

© Fraunhofer IESE

8

Foundations

Development

AArchitecture

Project Management

Interfaces

Architecture and Agility

© Fraunhofer IESE

18

Foundations

Agile Manifesto

Individuals and interactions over processes and tools
and we havemandatory processes and tools to control how those

dividuals (we prefer the term ‘resources’) interact

Working software over comprehensive documentation
as long as that software is comprehensively documented

Customer collaboration over contract negotiation
within the boundaries of strict contracts, of course, and subject to rigorous change control

Responding to change over following a plan
provided a detailed plan is in place to respond to the change, and it is followed precisely

That is, while there is value in the items on the right,
we value the items on the left more

[http://agilemanifesto.org/]

http://agilemanifesto.org/

© Fraunhofer IESE

19

Foundations

Agile Development Processes in Practice

 Scrum

 Scrum, but…

 Kanban

 Xtreme Programming

 Lean Development

 …

© Fraunhofer IESE

20

Foundations

http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf

© Fraunhofer IESE

21

Foundations

Different „Types“ of Interpreting Agility in Practice

Space defined by
Agile Manifesto

Space defined by
agile methods

(e.g. Scrum)

Dogmatic Agility ►

◄ Perceived Agility

© Fraunhofer IESE

22

Foundations

Positive Observations

 Fast results

 Early customer feedback

 Value oriented development

 Change considered as unavoidable fact in software development

© Fraunhofer IESE

23

Foundations

Characteristics of Successful Agile Projects

 Small team of skilled developers

 Developers directly talk to customers

 Architectural decisions are taken based on experience

 Coding starts very early

 Running system is delivered, discussed, and improved

© Fraunhofer IESE

24

Foundations

Negative Observations

 Agile as excuse for..

 Ad hoc organization

 Development without plan

 Highly dependent on (excellent) people

 Major refactorings reduce development speed

 High maintenance cost in subsequent lifecycle

- Does not scale to large-scale projects without adaptations
- Does often not lead to maintainable systems
- Does not allow changing developers
- Does not lead to uniform solutions

© Fraunhofer IESE

25

Foundations

Common Anti-Patterns

 Planning with only one iteration in mind

 Customer value overrated, long term business value
neglected

 Code considered as the only documentation

 Every requirement should be completely changeable

 Volatile organizational structures are considered agile

 Wrong productivity assumptions

 Self organizing team = No process

[K. Krogmann, M. Naab, O. Hummel; “Warum viele Organisationen weniger
agil sind, als sie denken“; Business Technology 2.14; 2014]

© Fraunhofer IESE

26

Foundations

Code considered as the only documentation

 “Code is documentation”

 There are other stakeholders than developers

 Separation of concerns hardly possible

 Missing abstraction

 Missing documentation of rationales

 Basis for long-term maintenance and evolution?

© Fraunhofer IESE

27

Foundations

Business Value over Customer Value

 Agile companies often only look at customer value

 They should look at business value (for their own company), too

 Business Value =
Customer Value +
Future Ability to deliver Customer Value

(parallel customers, low effort, high-speed delivery, …)

 Thus, there needs to be a counter-part to „feature-oriented only“ POs

© Fraunhofer IESE

28

Foundations

Delivered
Customer
Value

t

Max

Customer
Value
Orientation

Business
Value
Orientation

© Fraunhofer IESE

29

Foundations

Planning with only one iteration in mind

Time

Effort per
Increment

Time

Architecture Decisions
per Increment

Product
Backlog

Architectural
Impact

Planning scope

Short-term architectural
solutions: Planning only with
next sprint in mind

Expensive global
refactoring
(up to 50% refactoring
per sprint)

Global architectural
changes within every
sprint

now

© Fraunhofer IESE

30

Foundations

Architecture Work in Agile Environment

 “As little as possible, as much as needed”

 Planning

 Use available knowledge

 Risk-based approach mitigate risks

 Structuring

 Enable definition of work packages

 Guide development

 Actively deciding what is decided anyway

 “You cannot prevent architecture”

 “You can only prevent an inappropriate architecture

 Always adjusted to organization and project situation

© Fraunhofer IESE

31

Foundations

Architecture Best Practices for Agile Development

Agile Development

Identify
Architecture
Significant

Stories

Document
Quality Drivers as

Scenarios

Determine Planning
Horizon for
Architecture

Prototyping

Lightweight
Scenario

Discussion

Include Team
Expertise in

Architectural
Decision

Planning of
Development

based on
Architecture

Continuous
Integration /

Delivery

Code Review to
check Compliance

Technical
Counterpart to
Product Owner

© Fraunhofer IESE

32

Example

Exemplary Architecture Planning in Agile Development

Backlog

Detailed
solution

architecture

High level
architecture

Backlog
Backlog

Story

Epic

Architectural
delta for

specific sprint

Coarse
Planning

Team /
Architect

Development
Team

Guided
Planning

Derivation

© Fraunhofer IESE

33

Foundations

Influence Factors for Adequacy of Agile Development

Adequacy of
Agile

Development

Complexity
of the

product
(size of the

team)

Complexity of
the product’s
environment

Expected life-
span of the
system and
intensity of

maintenance

Similarity of
the product
to previous

ones

Developers
experience

and
expertise

© Fraunhofer IESE

34

Foundations

Things to Remember about Agile Development

 You have to care about the quality attributes of your system!

 You always make architectural decisions…

 … during architecture design or implementation

 Your architectural decisions get manifested in your implementation

 Don’t rely too much on refactoring

 It can be very effort-intensive

 Not all architectural decisions can be refactored

 It might compromise your architecture

 Plan upfront, at least to a certain extent

© Fraunhofer IESE

35

Exercise

Discussion

 What characterizes a good architect?

© Fraunhofer IESE

36

© Fraunhofer IESE

37

Foundations

What Architects Should be…

Software designer Domain expert

Technology expertStandards expert

Software Engineering economist Leader and manager

Software
architect

© Fraunhofer IESE

38

Foundations

What Architects do…

Lead

Develop project strategy

Design systems

Communicate with
stakeholders

Software
architect

Evaluate
technologies

Prototype spike
solutions

© Fraunhofer IESE

39

Foundations

An Architect’s Skills…

Organizational skills

Engineering skills

Interpersonal skillsSoftware
architect

© Fraunhofer IESE

40

Foundations

An Architect’s Skills…

 … and, most important, communication skills!

© Fraunhofer IESE

41

Foundations

Architect as a Mediator and Communicator

Technology (-specific) Level

Business Level

Architecture

Software
Architect

Developers

Business
Managers

Lan
g

u
ag

e

V
alu

e

R
isks

Lan
g

u
ag

e

C
red

ib
ility

© Fraunhofer IESE

42

Foundations

Types of Architects

Enterprise
architect

System
architect

Software
architect

Project
architect

…
architect

Application
architect

Determines scope, role, responsibility, and relationships

Depends on the organization, goals, products, …

 Terms vary!!!

© Fraunhofer IESE

43

Foundations

An Architect’s Goals…

Software
architect

Meet time, budget and quality

 Happy project owner!

Design adequate solutions
for the requirements

 Happy customers and users!

Break-down complexity in manageable,
integratable frames open for creative solutions

 Happy engineers

Design testable, producible, and
shippable software (variants)

 Happy internal stakeholders!

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

	Slide Number 1
	Architecture-Centric Engineering
	Architecture is a Central Artifact
	But Architecture is NOT a Stand-Alone Artifact!
	Project Management
	Organizational Management
	Lifecycle Management
	Development
	Architecting in Software Engineering
	Discussion
	When to Spend Architecting Effort…
	Architecture-Centric Engineering - AEPs
	Engineering Disciplines@Phases
	State-of-the-Practice
	Why to Spend Architecting Effort…
	Architecture and Agility
	Discussion
	Agile Manifesto
	Agile Development Processes in Practice
	Slide Number 20
	Different „Types“ of Interpreting Agility in Practice
	Positive Observations
	Characteristics of Successful Agile Projects
	Negative Observations
	Common Anti-Patterns
	Code considered as the only documentation�
	Business Value over Customer Value
	Slide Number 28
	Planning with only one iteration in mind�
	Architecture Work in Agile Environment
	Architecture Best Practices for Agile Development
	Exemplary Architecture Planning in Agile Development
	Influence Factors for Adequacy of Agile Development
	Things to Remember about Agile Development
	Discussion
	Slide Number 36
	What Architects Should be…
	What Architects do…
	An Architect’s Skills…
	An Architect’s Skills…
	Architect as a Mediator and Communicator
	Types of Architects
	An Architect’s Goals…
	Slide Number 44

